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Invariant correlational entropy and complexity of quantum states
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We define correlational~von Neumann! entropy for an individual quantum state of a system whose time-
independent Hamiltonian contains random parameters and is treated as a member of a statistical ensemble. This
entropy is representation independent, and can be calculated as a trace functional of the density matrix which
describes the system in its interaction with the noise source. We analyze perturbation theory in order to show
the evolution from the pure state to the mixed one. Exactly solvable examples illustrate the use of correlational
entropy as a measure of the degree of complexity in comparison with other available suggestions such as
basis-dependent information entropy. It is shown in particular that a harmonic oscillator in a uniform field of
random strength comes to a quasithermal equilibrium; we discuss the relation between effective temperature
and canonical equilibrium temperature. The notion of correlational entropy is applied to a realistic numerical
calculation in the framework of the nuclear shell model. In this system, which reveals generic signatures of
quantum chaos, correlational entropy and information entropy calculated in the mean field basis display similar
qualitative behavior.@S1063-651X~98!09207-1#

PACS number~s!: 05.70.Ln
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I. INTRODUCTION

The concept of entropy is fundamental for many branc
of physics and other sciences dealing with systems wh
reveal a certain degree of complexity and disorder.
stressed in Ref.@1#, ‘‘entropy is not a single concept bu
rather a family of notions.’’ This monograph and an earl
review article @2#, contain historical information and giv
many examples of different approaches to the idea of entr
and numerous applications.

In relation to quantum theory, the mainstream of devel
ment is formed by four main overlapping lines. They can
referred to as thermodynamical~Boltzmann-Gibbs! entropy,
quantum ensemble~von Neumann! entropy, information
~Shannon! entropy, and dynamical~Kolmogorov-Sinai! en-
tropy. Since the general description of a quantum syst
including its interaction with the environment, time develo
ment, and relaxation to equilibrium, can be given in terms
the density matrix@3,4#, the von Neumann definition seem
to be the most fundamental. For a system in an equilibri
with a heat bath, the density matrix~and, accordingly, von
Neumann entropy! is equivalent to that in the canonical o
grand canonical thermal ensemble. The evolution of a clo
quantum many body~gaslike! system from a random initia
state is shown@5,6# to lead to the same values of macr
scopic observables as for the thermal equilibrium descri
by the microcanonical ensemble which has a clear semic
sical limit as the equipopulation on the energy surface
phase space. The ensemble entropy cannot be represen
an expectation value of a dynamic variable expressed b
operator in Hilbert space. However, being a trace functio
of the density matrix, it is invariant under unitary basis tran
PRE 581063-651X/98/58~1!/56~13!/$15.00
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formations. For a pure wave function, as that of a station
state in an isolated system, basis-independent von Neum
entropy vanishes. This reflects the mixed character of
quantum state with incomplete information.

Information entropy, with traditional applications in com
munication theory, is expressed in terms of probabilit
rather than amplitudes. Therefore, it is representation dep
dent, being different for different choices of the set of mu
ally excluding events. In quantum systems, one can find
formation entropy of individual eigenstates with respect to
specific basis. All correlations between the amplitudes of d
ferent components of the wave function are suppresse
this definition. Averaging information entropy over some e
semble of quantum states, one obtains a measure of ave
complexity of those states. At this stage, the similarity b
tween information entropy and von Neumann ensemble
tropy can emerge if one can establish an appropriate co
spondence between the ensembles used in the
approaches and the basis utilized in calculating informat
entropy @7#. Thus for canonical equilibrium thermal en
sembles, the correlations are destroyed by the random in
action with the heat bath, so that the density matrix is di
onal in the energy representation for the system. In this c
the eigenvalues of the density matrix give the occupanc
of the stationary eigenstates of the isolated system wh
could be directly used for constructing informatio
~5thermodynamical! entropy@3,8#.

The so-called dynamical entropy, extensively studied d
ing the last decade@9–14#, is essentially information entropy
applied to a random sequence of measurements of quan
observables. Apart from the intrinsic complexity of the sy
tem under study, this construction reflects special feature
56 © 1998 The American Physical Society
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the quantum measurement process. This entropy depend
only on the initial state but, in addition, on the observa
and on the way of performing the measurement. It can
defined so that it give classical Kolmogorov-Sinai entro
@15# in the corresponding limit of fine-grained phase spa
when the sequence of measurements may be described
the aid of symbolic dynamics@16–18,14#.

Information entropy used as a tool for quantifying t
degree of complexity of individual quantum states@19–22#
shows delocalization of the wave function in a given bas
However, as a rule one can find a basis, or a family of ba
which are singled out by physical arguments specific
each system. The delocalization length in such a represe
tion manifests the complex character of the state, and ca
quantitatively related to other signatures of quantum cha
This exceptional role is naturally played by the coordin
representation in billiardlike cases@20# and by the quasien
ergy basis in the problems with a periodic perturbation@21#.
For realistic many-body systems with strong interaction
tween constituents, the mean field represents the except
basis where the local correlations and fluctuations of a
cent stationary states are separated from their regular ev
tion along the spectrum@22#.

As shown in large scale nuclear shell model calculatio
@23,7#, the representation dependence of information entr
might be considered in some respects as an advantage w
provides a useful physical measure of mutual relations
between the eigenbasis of the Hamiltonian and the repre
tation basis. Moreover, chaotic dynamics make differ
states with close excitation energy and the same value
exact constants of motion ‘‘look the same’’@24#, i.e., have
similar observable properties. This is nothing but a mic
scopic picture of thermal equilibrium@25#. After averaging
over a narrow energy window in a high level density regio
information entropy in the mean field basis becomes
smooth function of excitation energy and carries@26,7# the
same thermodynamic contents as thermal entropy found
the microcanonical distribution from the level density. Bei
calculated in a random basis, the magnitude of informat
entropy of generic states in a complex system is typically
the level predicted by random matrix theory, and does
display any regular evolution along the spectrum.

The goal of the present paper is to explore the possib
of describing the degree of complexity of individual qua
tum states using the von Neumann definition of entropy,
applying an external noise which converts a pure state in
mixed one. We do not consider the perturbation to be we
therefore, the resulting mixed state depends explicitly on
noise properties and gives a description of the ensem
‘‘system plus noise.’’ The behavior of regular and chao
systems under the change of parameters of the Hamilto
was widely discussed; see, for example, Refs.@27–38#. Mul-
tiple avoided crossings of the energy terms as a function
parameters reveal strong mixing, and drive the system to
chaotic limit. The analogy of level dynamics with that of
one-dimensional gas of colliding particles is very product
for studying the spectral statistics@39,27,28,34,40,41#. Here
we assume that the ensemble of the parameter values i
fined by a distribution function, and calculate the dens
matrix and von Neumann entropy for a given energy te
Using exactly solvable models, we show essential feature
not
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representation-independent entropy obtained according
this definition, and its similarity to and distinction from in
formation entropy. Even for the simplest systems, such a
harmonic oscillator in a random uniform field, the resultin
steady states are far from trivial. We also give an example
a realistic numerical calculation for a many-body system
fermions~a nucleus24Mg! which shows that our ensembl
entropy ~‘‘correlational’’ entropy! is a smooth function of
excitation energy, and therefore may be used as a measu
the degree of complexity.

II. DENSITY MATRIX AND CORRELATIONAL ENTROPY

We consider a quantum system interacting with a s
rounding. The interaction will be parameterized by a set
real parametersl in the Hamiltonian,H5H(l). The energy
spectrum of the system is assumed to be discrete. The ei
functions ua;l& of the system, as well as its energy leve
Ea(l), evolve withl. For a complicated system, the lev
crossings are avoided, so one can continuously follow th
energy terms.

At a fixed value ofl, one can use any complete orthono
mal basisuk& to study the evolution of the eigenstates
terms of the amplitudesCk

a(l),

ua;l&5(
k

Ck
a~l!uk&. ~1!

Instead of the wave function~1!, one can also use the densi
matrix r (a), whose elements are

rkk8
~a!

~l!5Ck
a~l!Ck8

a* ~l!. ~2!

r (a) is a Hermitian matrix in Hilbert space of the system. F
a pure stateua;l&, the descriptions in terms of the wave fun
tion ~1! and the density matrix~2! are fully equivalent. The
obvious properties of the density matrix~2! are the normal-
ization

Tr r~a!~l!51, ~3!

and the matrix identity

„r~a!~l!…25r~a!~l!, ~4!

which shows that the eigenvalues of this matrix can be o
0 or 1. Actually, the density matrix~2! is diagonalized in the
eigenbasisua8;l&. Only one eigenvalue, for the origina
statea85a, is equal to 1, while the rest of the eigenstat
belong to the degenerate subspace with the zero eigenva
of r (a)(l), so thatr (a)(l) is the projection operator onto th
stateua;l&. Inversely, these properties can be taken as a
nature of a density matrix describing a pure state.

Now we assume that the interaction parametersl are ran-
dom, and have to be considered as members of an ense
characterized by the normalized distribution functionP~l!,
*dl P(l)51. Then the description in terms of a wave fun
tion becomes impossible, and our system is described by
density matrix~here and below the overline refers to e
semble averaged quantities!
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58 PRE 58SOKOLOV, BROWN, AND ZELEVINSKY
rkk8
~a!

5Ck
aCk8

a* 5E dl P~l!rkk8
~a!

~l!. ~5!

This is still a Hermitian matrix with a trace equal to 1. Bu
generally, the operator identity~4! is not valid anymore. The
eigenvaluesrn

(a) of the matrix~5!,

r~a!un)5rn
~a!un), ~6!

are non-negative numbers between 0 and 1,

~rn
~a!!2<rn

~a! . ~7!

These eigenvalues can be interpreted as mean occup
numbers of the eigenstatesun! for a system which was
brought into the contact with an external source being or
nally in the intrinsic stateua&. The exceptional case of a pur
wave function is recovered for a fixed parameter,P(l)
5d(l2l0). In notations of Eq.~6! and later on, we distin-
guish the eigenstatesun! of the density matrix from the eigen
statesua& of the Hamiltonian by using parentheses and an
lar brackets, respectively; the dimensions of both sets
equal.

The statistical distribution of occupancies can be char
terized by the von Neumann entropy

S~a!52Tr$r~a! ln r~a!%52(
n

rn
~a! ln rn

~a! . ~8!

This entropy, still being attributed to a single original ener
term ua&, reflects correlational properties of the system s
ject to different levels of noise. Therefore, we will call
correlational entropy, although definition~8! is quite similar
to that of standard thermodynamic entropy in canonical th
mal ensembles@2#. In contrast to the information entropy o
a given complicated state in a fixed basisuk&, which was
used in the studies of quantum chaos@19–21,23#,

I a52(
k

Wk
a ln Wk

a , Wk
a5~Ck

a!2, ~9!

the correlational entropy~8! is invariant and does not depen
on the original basis$uk&% of simple configurations. Obvi-
ously, this is a consequence of correlations between diffe
components of the eigenfunction which aredisregardedin
the probabilistic definition of Eq.~9!.

For a pure quantum stateua;l&, correlational entropy van
ishes independently of the degree of complexity of the s
tem. ThusSa characterizes the intrinsic termua& as a member
of the statistical ensemble. In general,Sa has an order of
magnitude of lnÑa , whereÑa is a number of the eigenstate
un! which have the occupanciesrn

(a) noticeably different
from zero. The maximum possible value of correlational e
tropy is lnN, where N is the dimension of Hilbert space
This value would correspond to the ‘‘microcanonical’’ de
sity matrix,rn

(a)5const51/N. Note that the information en
tropy @7# has the order of magnitude of lnNa , whereNa is a
number of essential components in the stationary wave fu
tion ua;l& expressed in an original basis which was used
the definition of information entropy. Although formally th
maximum value of information entropy is also lnN, its typi-
ion
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cal value in the Gaussian orthogonal ensemble of rand
real symmetric Hamiltonians stays, due to the fluctuatio
on the level of ln(0.48N); see Refs.@21,42,7#. In contrast to
that, correlational entropy shows the degree of mixing,
decoherence, introduced by a given source of noise, reg
less of the relationship between the resulting state and
original unperturbed basis.

III. PERTURBATION THEORY

We start with simple examples which allow us to obta
exact solutions and shed some light on main properties
physical meaning of new entropy. First we discuss the c
of a narrow noise rangeDl that is small as compared to th
scale of the parameter values which would lead to a con
erable change of the wave functions. This is the perturba
regime. We can assume that the distribution functionP~l! is
concentrated nearl50, and find the perturbed wave func
tion which starts its evolution forlÞ0 from the unperturbed
state u0&. The stateu0& acquires the admixtures of statesuk
Þ0& which are given by standard perturbation theory~we
assume the absence of degeneracy!.

With the HamiltonianH5H01lV where the perturba-
tion V is an off-diagonal operator in the eigenbasis ofH0 ,
the density matrix~5! of the stateu0& is, up to the second
order inl,

r lm5d l0dm0S 12l2(
kÞ0

uVk0u2

ek
2 D 2l̄S d l0

Vm0*

em
1dm0

Vl0

e l
D

1l2H Vl0Vm0*

e lem
1

d l0~12dm0!

em
(
kÞ0

Vmk* Vk0*

ek

1
dm0~12d l0!

e l
(
kÞ0

VlkVk0

ek
J . ~10!

Here l̄ and l2 are the mean values over an ensemble
noise, and the notationek[Ek2E0 is used for the energy
denominators. The density matrix~10! incorporates two ef-
fects; the redefinition of the original wave functionu0& due to
the perturbationlV, and the transition from the pure state
the density matrix. The first effect is the only one if th
perturbation is fixed, while the second effect appears beca
of the ensemble distribution of perturbations.

It is easy to see that the first order correction to the d
sity matrix does not change the purity condition@Eq. ~4!#
r25r. The decoherence occurs only in the second ord
The diagonalization problem~6! for the matrix~10! can be
solved to give, within a needed accuracy, two nonvanish
eigenvaluesrn as the roots of the characteristic equation,

r~12r!2w~Dl!250, ~11!

andN22 zero eigenvalues. As expected, the statistical m
ing is driven by the mean square fluctuation(Dl)25l2

2l̄2 of the noise level. The decoherence rate is determi
by the joint action of all virtual transitions,

w5(
k

uvku2, vk[
Vk0

ek
. ~12!
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PRE 58 59INVARIANT CORRELATIONAL ENTROPY AND . . .
As seen from Eq.~11!, only one stateu0! has an eigen-
valuer0 close to 1,

r0512w~Dl!2. ~13!

The corresponding eigenfunctionu0)5(kck
(0)uk& has a large

componentc0
(0)'12(w/2)l̄2 of the unperturbed stateu0&,

and small admixtures of other unperturbed states,ck
(0)

'2l̄vk , kÞ0; the corrections are of higher order if th
distribution functionP~l! is even, so thatl̄50.

In approximation~11!, the new stateu1! appears with a
small but nonzero occupation factor

r15w~Dl!2. ~14!

The eigenfunction of this state is localized mainly in t
subspace orthogonal to the unperturbed state,ck

(1)

'vkw
21/2, kÞ0. The presence of noise removes the isot

pic degeneracy of this (N21)-dimensional subspace by sin
gling out the direction of the multidimensional vector
transition amplitudes$vk%. Finally, the N22 degenerate
-

states with the zero occupation factorsrn are orthogonal to
the first two states. The high order perturbative correctio
consequentially lift the remaining isotropy, populating ne
combinations of original states. The decoherence process
be rather fast due to the added contributions of many dis
admixtures, so that perturbation theory can be valid at a v
low noise level only. This ‘‘coherent decoherence’’ was d
cussed in a different context in Ref.@43#. It is related to the
selection of the most important~rainbow! diagrams in theory
of disordered solids and in random matrix theory.

The perturbed occupancies lead to nonzero entropy@Eq.
~8!#

S52r0 ln r02r1 ln r1'W~12 ln W!, W5w~Dl!2.
~15!

The singularity at the origin implies the infinite slop
dS/dW52 ln W, of growing entropy.

IV. TWO-LEVEL SYSTEMS

There exists vast literature studying two-state quant
systems in random surrounding; see, for example, Refs.@44#
FIG. 1. Correlational entropy of the two-level system~16! as a function of the ratiot52V/L of the strength of the mixing interaction
2V to the range of the random fluctuationL of the level positions; parts~a!, ~b!, ~c!, and~d! correspond to the valuesx5e/L50.2, 0.6, 1,
and 5, respectively, wheree is the static level spacing.
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and @45#. Here we are interested only in a rarely discuss
aspect of the problem, namely, that of complexity of sta
generated by stationary noise. We present the results in b
the details can be found in the extended version of the pa
@46#.

We will first illustrate how correlational entropy is relate
to an interplay between the off-diagonal mixing of the lev
and their diagonal displacement. The two-state Hamilton
can be written, with the help of spin matrices, as

H5 1
2 ~e2l!sz1Vsx . ~16!

Direct calculation shows that the two eigenstates of the d
sity matrix ~5! have equal correlational entropies

S52
1

2 F ~11r !ln
11r

2
1~12r !ln

12r

2 G , r 5As21c2.

~17!

In derivation of Eq.~17!, the diagonalizing basis rotation wa
performed through an anglew/2, defined in terms of the
parameters of Eq.~16!, sinw52V/D and cosw5(e2l)/D,
where D(l)5@(e2l)214V2#1/2 is the level spacing;c
[cosw and s[sinw are corresponding quantities averag
over the ensemble. Of course, the average quantities in
eral do not satisfys21c251. The entropy value~17! evolves
from S50 for nonfluctuating parameters toS5 ln 2 for the
equipartition of the occupancies.

Let us consider the behavior of correlational entropy
the ensemble with the uniform distribution of fluctuatin
level positionsl in the interval (2L,L). Then we have

s5
V

L
ln

e1L1D~2L!

e2L1D~L!
, c5

D~2L!2D~L!

2L
. ~18!

The simplest case corresponds to the original degenerae
50, when

s5
t

2
ln

A11t211

A11t221
, c50, t5

2V

L
. ~19!

The average parameters is small,s't ln(2/t), if the noise
level is high and the intrinsic mixing is weak compared
the typical random level spacing,t!1. At strong mixingt
@1, s reaches 1. In this limit the levels are split by th
dynamic interaction, and the noise is ineffective in chang
the population and reaching the decoherence. The ent
value correspondingly evolves from ln 2 to 0. This behav
is opposite to the evolution of information entropy of th
same states,

I 52
11cosw

2
ln

11cosw

2
2

12cosw

2
ln

12cosw

2
,

~20!

as a function of the mixing strength for a fixed diagon
spacing;I→0 at weak mixing andI→ ln 2 at strong mixing.
d
s
ef;
er

n

n-

n-

r

g
py
r

l

In this example, information entropy measures merely
delocalization of the eigenstates with respect to the orig
basis.

In Fig. 1, we show correlational entropy~17! as a function
of t for different values of the ratiox5e/L. At x,1 @Figs.
1~a! and 1~b! correspond tox50.2 and 0.6, respectively#, the
results are qualitatively similar to those ate50, Eqs.~17!
and~19!. With no dynamic mixing,t50, entropy is close to
its maximum value,S' ln 22x2 at smallx. As the relative
strengtht of the dynamic mixing increases, the value
entropy drops,S'@11 ln(4t)#/(4t) at larget. At x>1, the
entropy behavior changes, since the noise level is not s
cient for covering the original level spacing@see Figs. 1~c!
and 1~d!, for x51 and 5, respectively#. In this situation,
weak dynamic mixing increases entropy, which starts fr
zero att50 and reaches its maximum value, much low
than ln 2, att5x. With the mixing strength increasing fur
ther, the level repulsion prevails which leads again to v
low entropy.

A complementary picture of Fig. 2 shows correlation
entropy ~17! as a function of the relative noise streng
x215L/e for four different values of the intrinsic dynami
cal mixingz52V/e5t/x. Generally, entropy increases wit
x21 and asymptotically approaches the maximum value ln
For weak dynamical mixingz, the growth of correlational
entropy is very steep in the vicinity of the pointx51, where
the accidental level crossing is possible for the first tim
compare the change of behavior at this point in Fig. 1. T
stronger the dynamical mixing, the smoother the increase
entropy becomes. Entropy remains low as long as the int
sic level repulsion governed by the parameterz dominates.

The situation is different if the diagonal elements a
fixed @we change the notation (e2l)→e# but the off-
diagonal coupling fluctuates, for example,V is uniformly
distributed betweenv.0 and 2v. Here the only relevant
parameter is that of perturbation theory, the ratiok52v/e of
the level spacing due to the mixing to the unperturbed sp

FIG. 2. Correlational entropy of the two-level system~16! as a
function of the random perturbation strengthx21 for four values of
the intrinsic mixing strengthz5t/x: 0.01 ~solid line!, 0.1 ~dotted
line!, 2 ~dashed line!, and 10~dot-dashed line!. All the curves as-
ymptotically approach the limiting value ln 2; the rate of approa
is slower for larger values of the strength parameter.
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ing. Due to symmetry of the perturbation,s vanishes, while
c5@ ln(k1A11k2)#/k. With weak mixing,c'12(k2/6),
and entropy~17! is low,

S'~k2/12!ln~k2/12!, k!1. ~21!

When the mixing intensity increases,c decreases, and en
tropy approaches its limiting value for equipopulated leve

S' ln 22
c2

2
' ln 22

1

2 S ln 2k

k D 2

, k@1. ~22!

The off-diagonal mixing plays a ‘‘natural’’ role of nois
which creates entropy, in contrast to the previous exam
when it stabilized the system by generating dynamic rep
sion as a counterpoise to random noise; that situation ca
considered as a prototype of the localization in disorde
solids, when the levels in the wells connected by tunnel
fluctuate.

The same expression@Eq. ~17!# for correlational entropy
is valid for the Hamiltonian

H5s•n ~23!

for a spin 1
2 in a random field described by the unit vectorn

with a random direction~u,w!. The parameterr is given here
by

r[An̄25Ac21s1s2, c[cosu,

s6[sin u exp~6 iw!, 0<r<1. ~24!

This model is more general in the sense that both the mix
strength and the level spacing are fluctuating. On the o
hand, the level spacing here does not depend on noise
there is no level crossing. Information entropy~9! of the
eigenstates for a fixed field orientation,

I 15I 252
1

2 H ~11ucosuu!ln
11ucosuu

2

1~12ucosuu!ln
12ucosuu

2 J , ~25!

does not depend on the azimuthal anglew. Expressions~25!
and ~17! have identical structures. Correlational entropy
duces to information entropy in the case when the field
rection is uniformly distributed on the surface of a cone w
the fixed polar angleu. The average density matrix is the
diagonal in the originalz representation, which is singled ou
by azimuthal symmetry of the noise distribution. The tw
,

le
l-
be
d
g

g
er
so

-
i-

entropies coincide numerically at a pointu5u0 , where the
effective angleu0 is defined by the condition cosu05r.

V. RANDOM MATRIX ENSEMBLES

The 232 Hamiltonian matrix of an arbitrary two-leve
system can be presented as

H5 1
2 ~u1s•v! ~26!

in terms of one scalar (u5Tr H) parameter and one vecto
(v5vn) parameter. The vectorv is restricted to the (x,z)
plane if time reversal invariance holds, and becomes th
dimensional otherwise. Its magnitudev gives the level spac-
ing. Both entropiesI andS depend only on the unit vectorn,
so that formulas~17! and~25! of Sec. IV remain valid inde-
pendently of statistical properties ofu andv.

Usually the random parameters of the Hamiltonian
supposed to obey Gaussian statistics. In Gaussian ran
matrix ensembles, all eigenstates have the same statis
distributions, so that any of them can represent the gen
features. First we point out the properties of correlatio
entropy using the example of two-level Gaussian ensemb
According to Eq.~17!, this entropy reaches its maximum
value of ln 2 under the condition ofn̄50. This is obviously
the case for invariant@Gaussian orthogonal~GOE! or Gauss-
ian unitary~GUE!# ensembles where the vectorn is distrib-
uted isotropically. For both the ensembles, the mean in
mation entropy

I GOE5
1

2p E
0

2p

dw I ~w!52 ln 221 ~27!

or

I GUE5
1

4p E dV I ~u!5
1

2
~28!

is always lower thanS. In Eqs. ~27! and ~28!, the angular
coordinates of the unit vectorn are used, 0<w<2p and 0
<u<p. The instantaneous quantityI (n) passes the maxi
mum value of ln 2 at the certain orientations of the vectorn,
as at the pointu5p/2 in Eq. ~25!, remaining smaller every-
where else.

Correlational entropy also remains at the maximum va
when variances of all matrix elements have arbitrary val
and the vectorn ceases to be fully isotropic. Indeed, th
probability distributions for ensembles of real symmetric m
trices,

Psym~n!dw5
s§

§2 cos2 w1s2 sin2 w

dw

2p
, ~29!

and Hermitian matrices,
PHerm~n!dV5
s2§1

2§2
2

@§1
2§2

2cos2u1s2~§1
2sin2w1§2

2cos2w!sin2u#3/2

dV

4p
, ~30!
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remain even, which yieldsn̄50 as before. In Eq.~30!, s2

5(s1
21s2

2)/2, whereass1,2 and§1,2 are variances of diago
nal and off-diagonal matrix elements, respectively. The c
relational entropy drops to zero only when the off-diago
matrix element vanishes identically. The randomness of
interaction is of major importance. Conversely, informati
entropy I is sensitive to the ratios of variances which a
different in different representations.

Gaussian ensembles of large (N@1) random matrices at
tract special attention for modeling chaotic dynamics
quantum systems. The Hamiltonian matrix elements ca
lated in a fixed basis are taken as mutually independ
Gaussian random variables. The idea of complete chaos
plies that their distribution be invariant with respect to t
choice of the representation basisuk&. This invariance pro-
vides a rigid connection between variances of all matrix
ements. However, it has been discovered that one gain
additional possibility of describing special effects, such
dynamical localization, by permitting more flexible cond
tions for the variances. A preferential basis exists, th
where the localization takes place. This basis should be
fined in each case in accordance with the physical situat
The Gaussian ensembles of large random matrices with b
structures whose elements decrease rapidly outside a ba
a typical sizeb around the main diagonal are believed~see,
for example, Ref.@47#! to model the stochastic motion wit
localization. Basis dependent information entropy or/and
inverse participation ratio are used to describe the degre
localization; see, for example, studies of the banded rand
matrix ensemble in Refs.@48,49#, and realistic nuclear she
model calculations@7,23# where the configuration selectio
rules generate a quasibanded pattern of the Hamiltonian
trix in the mean field basis. The localization length is th
expressed asl loc5exp(I) in terms of information entropyI
calculated in the preferential basis.

However, the band structure of Hamiltonian matrices
not maintained in an arbitrarily chosen basis. Generally,
formation entropy found in such a basis contains no inf
mation on the localization. Conversely, correlational entro
presents a universal and invariant characteristic of cha
dynamics in the presence of localization. The density ma
r (E) in the vicinity of energyE can be directly connected t
the imaginary part of the resolvent matrix,

r~E!5
d

p
Im^G~E2 i0!&, ~31!

where the angular brackets imply, along with the ensem
averaging, energy averaging over a small window around
point E, andd is the local mean level spacing. In the spec
basis where Hamiltonian matrices are banded, the ave
resolvent matrix is diagonal, and Eq.~31! reduces tork,k8

(E)

5^Wk
(E)&dk,k8 , whereWk

(E) gives the probability distribution
for a typical eigenvector with energy close toE. Therefore,
the ~basis independent! value of correlation entropy is equa
to

S~E!52(
k

^Wk
~E!& ln^Wk

~E!&, ~32!

while the information entropy is given by
r-
l
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I ~E!52(
k

^Wk
~E! ln Wk

~E!&. ~33!

According to the discussion below Eq.~9!, the two entropies
are related in this basis asI (E)5S(E)1 ln(0.48), which leads
to the basis-independent expression for the localiza
length

l loc50.48 exp~S~E!!. ~34!

VI. HARMONIC OSCILLATOR IN A RANDOM FIELD

Here we consider a problem with infinite Hilbert spac
namely, that of a linear harmonic oscillator in a unifor
external field of a random strength. The diagonalization
the Hamiltonian at any fixed parameter value is elementa
but the diagonalization of the density matrix and calculat
of correlational entropy are not trivial, and we did not e
counter the full solution in the literature although our resu
slightly overlap with those of Ref.@50#.

A. Model

At a given strengthF, the Hamiltonian of the problem,

H[H02Fx5
1

2m
p21

1

2
mv2S x2

F

mv2D 2

2
F2

2mv2 ,

~35!

describes the harmonic oscillator with a shifted equilibriu
point, unchanged frequency, and energy spectrumEn(l)
5\v(n11/22l2), where the integern plays the role of the
exact quantum numbersa in Eq. ~1!. The dimensionless
‘‘noise’’ parameterl5F(2\mv3)21/2 displaces the spec
trum as a whole~no crossing in this model!.

The ‘‘natural’’ basisuk& of equidistant nonshifted states o
a noiseless system (l50) is built with the annihilation and
creation operators,

x5
x0

&
~a†1a!, p5

i\

&x0

~a†2a!, x05A \

mv
.

~36!

The shift of the equilibrium along thex axis to the pointx̄
5F/mv25&x0l is the unitary transformation

D~l!5e2 i&lx0p/\5el~a†2a!5D†~2l!, ~37!

H~l!5D~l!H0D~2l!2l2\v. ~38!

The eigenvectorsun;l& at a givenl are obtained from the
original nonshifted statesun&[un;l50& by the shift opera-
tor un;l&5D(l)un&. Therefore, the amplitudes of the eige
vectors~1! with respect to the noiseless basisuk& are given
by the matrix elements

Ck
n~l!5^kuD~l!un& ~39!

of the shift operator~37!. The instantaneous eigenvect
un;l& carries an average number of the original quanta eq
to
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n̄5^n;lua†aun;l&5n1l2. ~40!

B. Integral equation for the density matrix

For the noise ensemble characterized by the~positively
defined! distribution functionP~l!, the density matrix~5! of
the energy termun& is

rkk8
~n!

5E dl P~l!^kuD~l!un&^nuD†~l!uk8& ~41!

where the unitarity of theD transformation was used. Thi
matrix represents the density operator

r~n!5E dl P~l!D~l!un&^nuD†~l! ~42!

in the noiseless basis. It is convenient to project instead
eigenvalue problem

r~n!un)5rn
~n!un) ~43!

onto the set of statesun;l& with the noisel treated as the
representation variable. Generally speaking, this set of st
is not complete, and maps the original problem on the s
space of eigenstates which belong to all nonvanishing eig
valuesrn

(n) . In the new representation, the eigenfunctions

fn
~n!~l!5An

~n!AP~l!^nuD†~l!un&, ~44!

whereAn
(n) are normalization constants, satisfy the integ

equation

E dl8r~n!~l,l8!fn
~n!~l8!5rn

~n!fn
~n!~l!, ~45!

with the real symmetric kernel

r~n!~l,l8!5AP~l!^nuD~l82l!un&AP~l8!. ~46!

The diagonal elements of this kernel are simply the pr
abilities of the noise distribution,

r~n!~l,l!5P~l!. ~47!

They describe the ensemble itself, and do not depend on
term n under consideration.

The kernel~46! can be expressed as

r~n!~l,l8!5AP~l!P~l8!e2~l2l8!2/2Ln@~l2l8!2#
~48!

in terms of the Laguerre polynomialsLn . It follows from
Eqs. ~42!–~44! that the orthonormalized (n;n8un;n)5dn8n

subset of eigenvectors belonging to nonzero eigenvaluesrn
(n)

is expressed in terms of functions~44! as

un;n)5~rn
~n!!21/2E dlAP~l!fn

~n!~l!un;l& ~49!

if the mutually orthogonal solutions~44! of the integral equa-
tion ~45! with the Hermitian kernel~46! are normalized to
unity which corresponds to the choice ofAn

(n)5(rn
(n))21/2.
e

es
b-
n-
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Starting with the completeness condition(nun;n)(n;nu
51, one easily comes to the kernel representation

r~n!~l,l8!5(
n

rn
~n!fn

~n!~l!fn
~n!~l8!. ~50!

In the original oscillator basisuk&[uk;0&, the components of
the eigenvectors~44! are

~cn
~n!!k5^kun;n!

5~rn
~n!!21/2E dlAP~l!fn

~n!~l!^kuD~l!un&.

~51!

Matrix elements of the shift operator are equal to

^kuD~l!un&5e2l2/2An!

k!
~2l!k2nLn

k2n~l2!, ~52!

where Ln
q(j) is the associate Laguerre polynomial,Ln

0(j)
[Ln(j). Due to the symmetry propertyLn

k2n(j)
5(k!/n!)( 2j)n2kLk

n2k(j), the matrix ~52! is symmetric
with respect tok andn. Up to this point, the results are vali
for any energy termun;l& and an arbitrary distribution func
tion P~l!.

C. Gaussian noise

As an example of practical importance, we show the ex
solution for an oscillator originally in the ground state,n
50, interacting with a source of Gaussian noise of a cert
width L. The distribution function of the noise intensity is i
this case

P~l!5
1

A2pL2
e2l2/2L2

, ~53!

and the ground state density matrix~48! in the l representa-
tion ~we omit the superscriptn50! reads

r~l,l8!5
1

A2pL2
e2~l21l82!/4L2

e2~l2l8!2/2. ~54!

Using the properties of the Hermite polynomialsHn(x), one
can represent the kernel~54! as

r~l,l8!5 (
n50

`

rnfn~l!fn~l8! ~55!

in terms of the set of orthonormalized functions

fn~l!5S sinh h

p D 1/4 1

A2nn!
e2l2 sinh h/2Hn~Asinh hl!,

~56!

where

rn52 sinh~h/2!e2~n11/2!, ~57!

and the parameterh, 0<h,`, is defined by
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sinh h5
A114L2

2L2 . ~58!

Representation~55! obviously solves the eigenvalue pro
lem ~45! for the ground state term. The normalization of t
density matrix (n50

` rn51 can be checked directly. Th
value of correlational entropy defined by this density mat
is

S52(
n

rn ln rn5
h

2
coth~h/2!2 ln@2 sinh~h/2!#.

~59!

The distribution function for the number of original quanta
given by the diagonal matrix elements of the density ma
in the unperturbed basisuk&,

f k5^kuruk&5E dl P~l!u^ku0;l&u2

5A2

p

G~k11/2!

G~k11!

sinh~h/2!

~coshh!k11/2. ~60!

The average number of excited quanta equals

k̄5 (
k50

`

k fk5E dl l2P~l!5l25L2, ~61!

which leads to the simple value of average energy of
term

Ē5Tr~rH !5\v~ k̄11/2!2Fx5\v~1/22L2!, ~62!

in agreement with Eq.~40! for n50. The average energy o
a given term is always lowered by the presence of no
however, this energy cannot be attributed to the oscilla
itself, because it includes the contribution of the exter
noise source.

According to Eqs.~61! and ~58!, the mean number o
original quanta excited by the external field can be written

k̄5
1

4 sinh2~h/2!
. ~63!

Introducingk̄ as a new parameter,

sinh
h

2
51/~2Ak̄!, coshh5111/~2k̄!, ~64!

we obtain the distribution of quanta~60! in the form

f k5~2k̄!21/2
~2k!!

22k~k! !2

1

@111/~2k̄!#k11/2
. ~65!

When the external perturbation is turned off,k̄→0 and f k
→dk0 . In the opposite limit of strong noise, the mean nu
ber of excited quanta is large (k̄@1), and Eq.~65! reduces to
the x-square~Porter-Thomas! distribution

f k5~2p k̄k!21/2 exp@2k/~2k̄!#, k̄@1. ~66!
x

e

e;
r
l

s

-

We have to mention that, in the case of a fixed pertur
tion of a strengthl, we would have a pure coherent state
a shifted oscillator with the Poisson distribution

f k5e2 k̄
k̄k

k!
, ~67!

which reduces to the Gaussian distribution near the ce
k5 k̄ in the classical limit ofk̄@1. The width of the coheren
state in the occupation number representation is (Dk)25 k̄,
and therefore the relative uncertainty of this number is sm
Dk/ k̄5 k̄21/2. Contrary to that, in our random noise ensemb
~66! the state is mixed, and the fluctuations of the numbe
quanta are not suppressed even in the classical limit,

~Dk!252k̄2. ~68!

The situation is similar to that in the boson intensity inte
ferometry~Hanbury Brown and Twiss! for many incoherent
sources; see, for example, Ref.@51#.

D. Relation to thermodynamics

The eigenfunctions~56! of the density matrix~54! in thel
representation formally coincide with the coordinate wa
functions~jun! for a linear oscillator with the dimensionles
‘‘coordinate’’ j[Asinhhl. The dimensionless Hamiltonia
for such an oscillator would be

H5 1
2 ~j22d2/dj2!5~a†a11/2!, ~69!

where the annihilation and creation operators

a5
1

&
~j1d/dj!, a†5

1

&
~j2d/dj! ~70!

are introduced. The energy spectrum of the operator~69!,
«n5(n11/2), is equidistant and quantized inl-independent
units at any noise magnitude. Since the density operato
diagonal in the basis of the eigenfunctions of Eq.~69!, it is
tempting to interpret our results as an equilibrium reached
the system under the influence of the noise. The equilibra
~‘‘dressed’’! system is represented by the effective oscilla
~69!. We can assign the physical frequencyv to this oscilla-
tor, and interpret the corresponding occupation number sp
trum ~57! as the Planck formula with the effective temper
ture

T5
\v

h
. ~71!

Under this identification, the temperature scale is related
the range of noise,

L5
1

2 sinh~\v/2T!
, ~72!

or to the mean square value of the random force,

~F2!1/2x05
1

&

\v

sinh~\v/2T!
. ~73!
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The density operator can be represented in terms of
effective oscillator defined above as

r5exp~2\vH/T!5 (
n50

`

rnun)(nu,

rn52 sinhS \v

2T DexpS 2
\v

T
~n11/2! D . ~74!

The effective oscillator is in the conventional thermod
namic equilibrium with a heat bath of temperatureT, Eq.
~71!. In an ordinary way, we can define its free energy

F5T lnF2 sinhS \v

2T D G , ~75!

so that canonical thermodynamic entropy

S52
]F
]T

~76!

coincides with correlational entropy~59!. Thermodynamic
energy of the effective oscillator is equal to

U5F1TS5\vS n̄1
1

2D5
\v

2
coth

\v

2T
, ~77!

where the mean number of excited effective quanta is gi
by the Planck formula

n̄5
1

exp~\v/T!21
. ~78!

Let us consider an arbitrary dynamical variable of t
original oscillator described by the operatorO(a†,a),

Ō5E dl P~l!^luO~a†,a!ul&5E dl P~l!O~l,l!,

~79!

where the operatorsa† anda of original quanta are suppose
to be normally ordered with respect to the unperturb
vacuum; in the second equality@Eq. ~79!#, the properties of
the coherent stateul& were used. Since the parameters of t
effective oscillator depend on temperature@Eq. ~71!# via the
factorAsinhh, the mean value of any operator~79! contains
an additional nontrivial temperature dependence. Indeed
ing the relations~47! and ~55!,

P~l!5r~l,l!5 (
n50

`

rnfn~l!fn~l!, ~80!

we can express the mean value~79! in terms of the effective
oscillator

Ō5 (
n50

`

rnFnuOS a†1a

A2 sinhh
,

a†1a

A2 sinhh
D unG

5TrFrOS a†1a

A2 sinh~\v/T!
,

a†1a

A2 sinh~\v/T!
D G , ~81!
e

n

d

e

s-

with the density operator from Eq.~74!. For example, the
mean number of original quanta is given by

k̄5 (
n50

`

rn(nuS a†1a

A2 sinhh
D 2

un)

5
n̄11/2

sinh h
5

U
\v sinh h

5
1

4 sinh2~\v/2T!
, ~82!

in agreement with Eq.~63!.
The distribution@Eq. ~65!# of the original quanta differs

from the Planck formula~78!. At a narrow range of noise
T!\v and L'exp(2\v/2T), which corresponds to the
quantum low-temperature limit, we obtain a normal quant
result

k̄5e2\v/T, T!\v. ~83!

A broad noiseL'T/\v@1 leads to the classical limit o
high temperature. In this limit, the number of quanta is
creasing with temperature quadratically rather than linea

k̄5S T

\v D 2

, T@\v. ~84!

Let the random field applied to an oscillator with the ele
tric chargee be abruptly removed at the momentt50. The
oscillator remains excited and starts to radiate electrom
netic waves, losing its energy with the rate

Ē̇5
2e2x0

2v4

3c3 k̄5
2e2x0

2v4

3c3

n̄11/2

sinh~\v/T!

5
2e2x0

2v4

3c3

1

4 sinh2~\v/2T!
. ~85!

The emission rate directly measureseffective temperature.
Having no knowledge about the noise properties and det

ing only the frequencyv and intensityĒ̇ of radiation, we
could assume thermal equilibrium inside the radiating s
tem, and assign the temperatureT0 by the direct application
of the Planck formula instead of the actual distribution~65!.
It is easy to see that these temperatures are related thro

sinh2~\v/2T!5 1
2 sinh~\v/2T0!e\v/2T0. ~86!

For the narrow noise, two definitions agree:

T0'T, T!\v. ~87!

However, under conditions of the broad noise, they lead
very different assignments withT0@T:

T0'
T2

\v
, T@\v. ~88!

Two definitions can be discriminated in the case of the sp
trum of normal modes with different frequencies by the d
viations from the Planck formula at the low-frequency edg
if the noise amplitudeF is not frequency dependent.
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VII. A MANY-BODY EXAMPLE

Here we illustrate the concept of correlational entropy
calculating this quantity for a realistic many-fermion mod
with strong interparticle interaction of a variable rando
strength. For this purpose, we use the version of the nuc
shell model which provides the best available description
spectroscopic data for allsd nuclei @52#. The model Hamil-
tonian consists of the one-body part given by a spher
mean field due to the closed shell core of16O and the semi-
empirical residual two-body interaction determined by 63
duced matrix elementŝ( j 1 j 2)JTiVi( j 3 j 4)JT& allowed in
this truncated Hilbert space by the conservation laws of
gular momentumJ and isospinT. Apart from numerous spe
cific nuclear calculations, this model was recently us
@23,26,7# for studying highly excited states beyond the lim
of experimental information. One of the methods utilized
this analysis studies the evolution of observables as a fu
tion of the strength of the residual interaction@7,38,53#.

We take as a generic example a set of states with quan
numbersJpT5010 in the 24Mg nucleus, with four protons
and four neutrons in thesd-shell model space. The dimen
sion of this set of states isN5325. The unperturbed bas
uk& is that of simple independent particle configuratio
which are projected onto correct values of integrals of m
tion J andT. The residual interaction is split into two part
diagonal and off-diagonal, with respect to the basisuk&. The
diagonal part is included into unperturbed energies in or
to lift the degeneracy of bare configurations. The o
diagonal interaction with the overall factorl in front is our
‘‘random noise’’ with l50 and 1 corresponding to the in
dependent particle case and the realistic strength, res
tively.

The many-body Hamiltonian is diagonalized as a funct
of l which provides us with 325 energy termsEa(l). These
terms were shown in Fig. 1 of Ref.@38#. Multiple avoided
level crossings rapidly transform the eigenstates of
Hamiltonian into complicated superpositions of many ori
nal configurations. The generic signatures of quantum ch
in level statistics, such as nearest level spacing distribut
spectral rigidity, and level curvature distribution, agree w
the GOE predictions already atl'0.3. The calculation of
information entropy in the original mean field basis sho
that the evolution of complexity continues, so that atl51
the states in the middle of the spectrum are close to the G
limit of I 5 ln(0.48N).

Using the known eigenfunctionsua& of the system in the
original basisuk&, we find the density matrixrkk8

(a) (l) of Eq.
~2!, and construct the ensemble of such matrices for differ
values ofl. The uniform averaging overl in the chaotic
interval 0.3<l<1 gives the density matrixr (a) of Eq. ~5!.
This matrix can be diagonalized and its eigenvalues~occu-
pation numbers! determine correlational entropy~8!.

Figure 3 shows the correlational entropySa of all 325
states ordered according to increasing energy. Although
fluctuations at this dimension are significant, we neverthe
see the same qualitative pattern as the one obtained with
help of information entropy@23,7#. The degree of mixing
measured by correlational entropy evolves along the sp
trum, revealing the regular increase with excitation ene
~in finite Hilbert space the statistical properties of eigensta
y
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are symmetric with respect to the middle of the spectrum
the thermal description@26#, the center corresponds to infi
nite temperature with positive and negative temperature
gions on the left and right, respectively!. The behavior of
information entropy and of single-particle entropy defined
the evolution of the single-particle occupation numbers
essentially the same. However, the absolute scales are
different. As seen in Fig. 3, the typical values ofÑa

5exp@S(a)# for the most complicated states are close to
which is much lower than the localization length exp@I(a)#
found with the use of information entropy. From the pertu
bative analysis of Sec. III, we know that the number of
fectively occupied eigenstates of the density matrix is rela
to the order of perturbation theory. ThenÑ can be interpreted
in terms of a number of particle-hole excitons created by
spectral evolution. This point deserves to be studied mor
detail.

VIII. CONCLUSION

We have discussed examples of quantum-mechanical
tems under the conditions of stationary external noise, wh
was defined by a distribution function of parameters contr
ling the interaction Hamiltonian. The maximum of quantu
information on such systems is provided by the density m
trix which was found for various cases, analytically in Se
III–VI and numerically in Sec. VII. The perturbative trea
ment of Sec. III illustrates the mechanism of equilibrati
through the consecutive selection of directions in Hilb
space which form the eigenbasis of the density matrix.
other examples, the weakness of the interaction was no
sumed, and the solution was exact.

We have used correlational~von Neumann! entropy as a
tool for measuring the degree of disorder and complexity
stationary states. By definition, this entropy vanishes for p
quantum states. Therefore, it characterizes the system
given noise ensemble when the stationary states are mi
In general, the arising configuration with certain occupat
numbers of the eigenstates of the density operator does
coincide with thermal equilibrium as defined by canonic

FIG. 3. Correlational entropy of 325JpT5010 states in the
sd-shell model for the24Mg nucleus. The states are ordered
increasing energy.



i
la
s

se
er

he
ta
s
de

te
he
rm
f
he
i

ing
ti-

b
w
y
b

em
le

a
ni

c-

st
re

h is

s,
to
the
in
r-
pa-

aos.
me
gy,
bles.
i-

tita-

ed
ea-
um-
ise.
py

py
d-

os.

ory
m
.
s-
V.
tes
.

PRE 58 67INVARIANT CORRELATIONAL ENTROPY AND . . .
Gibbs ensembles. Accordingly, the correlational entropy
not equal to the thermodynamic entropy. Moreover, corre
tional entropy is calculated for the individual energy term
which evolve adiabatically as a function of the noi
strength. The resulting state is in general different for diff
ent terms.

It would be interesting to determine the conditions for t
external noise which would give the same equilibrated s
as in the heat bath. It is usually assumed that the neces
ingredient is the continuous spectrum of the normal mo
represented in the spectral expansion of noise@54#. We deal
with the stationary noise represented by random parame
in the Hamiltonian. In Sec. VI, however, we show that t
ground state of a harmonic oscillator in a random unifo
field can be described as an equilibrated thermal state o
effective oscillator with temperature determined by t
Gaussian width of the field distribution. The situation here
similar to that in many-body physics where the interact
system can be modeled@55# by a gas of dressed quasipar
cles with properties depending on temperature~in our case
the energy spectrum of the oscillator is not renormalized,
the coordinate scale is determined by noise and changes
effective temperature!. The difference between a simpl
heated oscillator in a thermostat and an oscillator excited
a Gaussian noise and described with the aid of effective t
perature might be important for the problems of multip
meson production@51,56# in high energy collisions. We can
also remind the reader that the notion of the effective qu
tum oscillator appears naturally in the problem of a u
formly accelerated observer in the Minkowski world@57,58#.
An observer falling with the proper accelerationg sees the
Minkowski vacuum as a black body emitter with the effe
tive temperatureT5\g/(2pc). This consideration is closely
related to the Hawking black hole radiation@59#. However,
in those cases, one has squeezed rather than coherent
of the oscillator~in terms of the unperturbed system they a
s.
s
-

-

te
ary
s

rs

an

s

ut
ith

y
-

n-
-

ates

produced by the source creating the quanta pairwise whic
described with the help of the Bogoliubov transformation!.

Representing the complexity of individual quantum term
our invariant correlational entropy can be juxtaposed
representation-dependent information entropy. We drew
attention of the reader to their similarity and distinction
various applications. Although they are formally quite diffe
ent, and may react in a different way to the change of
rameters of a simple regular system~Sec. IV!, they behave
qualitatively similar in a complicated system~Sec. VII!,
where one sees the standard signatures of quantum ch
Due to the similarity of adjacent states in the chaotic regi
@7#, both entropies are smooth functions of excitation ener
and therefore can be considered as thermodynamic varia
Both entropies carry information on the complexity of ind
vidual states and its evolution along the spectrum. Quan
tively, information entropy~in the appropriate basis! ex-
presses this complexity in terms of a number of mix
simple configurations, whereas correlational entropy m
sures essentially similar properties in larger blocks as a n
ber of classes of states effectively mixed by external no
Of course, one should remember that information entro
refers to a given Hamiltonian, while correlational entro
describes a ‘‘system plus noise’’ complex. The further stu
ies will bring the more deep insight into the problem.
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