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We define correlationalvon Neumanh entropy for an individual quantum state of a system whose time-
independent Hamiltonian contains random parameters and is treated as a member of a statistical ensemble. This
entropy is representation independent, and can be calculated as a trace functional of the density matrix which
describes the system in its interaction with the noise source. We analyze perturbation theory in order to show
the evolution from the pure state to the mixed one. Exactly solvable examples illustrate the use of correlational
entropy as a measure of the degree of complexity in comparison with other available suggestions such as
basis-dependent information entropy. It is shown in particular that a harmonic oscillator in a uniform field of
random strength comes to a quasithermal equilibrium; we discuss the relation between effective temperature
and canonical equilibrium temperature. The notion of correlational entropy is applied to a realistic numerical
calculation in the framework of the nuclear shell model. In this system, which reveals generic signatures of
guantum chaos, correlational entropy and information entropy calculated in the mean field basis display similar
gualitative behaviorfS1063-651X98)09207-1

PACS numbds): 05.70.Ln

I. INTRODUCTION formations. For a pure wave function, as that of a stationary
state in an isolated system, basis-independent von Neumann
The concept of entropy is fundamental for many branchegntropy vanishes. This reflects the mixed character of the
of physics and other sciences dealing with systems whiclguantum state with incomplete information.
reveal a certain degree of complexity and disorder. As Information entropy, with traditional applications in com-
stressed in Ref[1], “entropy is not a single concept but munication theory, is expressed in terms of probabilities
rather a family of notions.” This monograph and an earlierrather than amplitudes. Therefore, it is representation depen-
review article[2], contain historical information and give dent, being different for different choices of the set of mutu-
many examples of different approaches to the idea of entropglly excluding events. In quantum systems, one can find in-
and numerous applications. formation entropy of individual eigenstates with respect to a
In relation to quantum theory, the mainstream of develop-specific basis. All correlations between the amplitudes of dif-
ment is formed by four main overlapping lines. They can beferent components of the wave function are suppressed in
referred to as thermodynamic@oltzmann-Gibbsentropy,  this definition. Averaging information entropy over some en-
guantum ensembldvon Neumanj entropy, information semble of quantum states, one obtains a measure of average
(Shannon entropy, and dynamicalKolmogorov-Sinai en-  complexity of those states. At this stage, the similarity be-
tropy. Since the general description of a quantum systentween information entropy and von Neumann ensemble en-
including its interaction with the environment, time develop-tropy can emerge if one can establish an appropriate corre-
ment, and relaxation to equilibrium, can be given in terms ofspondence between the ensembles used in the two
the density matri{3,4], the von Neumann definition seems approaches and the basis utilized in calculating information
to be the most fundamental. For a system in an equilibriumentropy [7]. Thus for canonical equilibrium thermal en-
with a heat bath, the density matriand, accordingly, von sembles, the correlations are destroyed by the random inter-
Neumann entropyis equivalent to that in the canonical or action with the heat bath, so that the density matrix is diag-
grand canonical thermal ensemble. The evolution of a closednal in the energy representation for the system. In this case,
qguantum many bodygaslike system from a random initial the eigenvalues of the density matrix give the occupancies
state is showrj5,6] to lead to the same values of macro- of the stationary eigenstates of the isolated system which
scopic observables as for the thermal equilibrium describedould be directly used for constructing information
by the microcanonical ensemble which has a clear semiclag=thermodynamicalentropy|[3,8].
sical limit as the equipopulation on the energy surface in The so-called dynamical entropy, extensively studied dur-
phase space. The ensemble entropy cannot be representedragsthe last decad®—-14], is essentially information entropy
an expectation value of a dynamic variable expressed by aapplied to a random sequence of measurements of quantum
operator in Hilbert space. However, being a trace functionabbservables. Apart from the intrinsic complexity of the sys-
of the density matrix, it is invariant under unitary basis trans-tem under study, this construction reflects special features of
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the quantum measurement process. This entropy depends mepresentation-independent entropy obtained according to
only on the initial state but, in addition, on the observablethis definition, and its similarity to and distinction from in-
and on the way of performing the measurement. It can b&rmation entropy. Even for the simplest systems, such as a
defined so that it give classical Kolmogorov-Sinai entropyharmonic oscillator in a random uniform field, the resulting
[15] in the corresponding limit of fine-grained phase spacesteady states are far from trivial. We also give an example of
when the sequence of measurements may be described wahrealistic numerical calculation for a many-body system of
the aid of symbolic dynamickl6—18,14. fermions (a nucleus**Mg) which shows that our ensemble
Information entropy used as a tool for quantifying the €Ntropy (“correlational” entropy) is a smooth function of

degree of complexity of individual quantum stafd9—22 excitation energy, and therefore may be used as a measure of

shows delocalization of the wave function in a given basish€ degree of complexity.

However, as a rule one can find a basis, or a family of bases,

which are singled out by physical arguments specific forll. DENSITY MATRIX AND CORRELATIONAL ENTROPY
each system. The delocalization length in such a representa- W id i ¢ int . ith 5
tion manifests the complex character of the state, and can be € consider a quantum sSystem Interacting with a sur
guantitatively related to other signatures of quantum Chaog_oundlng. The interaction will be parameterized by a set of

This exceptional role is naturally played by the coordinatereal parameters in the HamiltonianH=H()). The energy

representation in billiardlike casé20] and by the quasien- spectrum of the system is assumed to be discrete. The eigen-

ergy basis in the problems with a periodic perturbafi®h]. IELm(;\tlons |a|;)‘> Of.tthhf T:ystem, as ;{veli ‘ZS |tstener?hy Ilevells
For realistic many-body systems with strong interaction be- ol ) evolve withA. For a complicated system, he leve
0ssings are avoided, so one can continuously follow these

tween constituents, the mean field represents the exception%rl t
basis where the local correlations and fluctuations of adja‘?ni\rtgy f_errgs. | o lete orth
cent stationary states are separated from their regular evolu- afixed value o, one can use any complete orthonor-
: mal basis|k) to study the evolution of the eigenstates in
tion along the spectru?2]. tth itudeE®

As shown in large scale nuclear shell model calculationd®'™M$ of the amplitude€; ()),
[23,7], the representation dependence of information entropy
mlght be considered in some respects as an advantage WhICh |a;7\>:2 ce(V)|K). 1)
provides a useful physical measure of mutual relationship K
between the eigenbasis of the Hamiltonian and the represen-
tation basis. Moreover, chaotic dynamics make differeninstead of the wave functiofl), one can also use the density
states with close excitation energy and the same values @hatrix p(®), whose elements are
exact constants of motion “look the samé¢24], i.e., have
similar observable properties. This is nothing but a micro- (0 \ Y= G\ CY () 2
scopic picture of thermal equilibriuf25]. After averaging Prac (M =CM)C (V). @
over a narrow energy window in a high level density region, () is a Hermitian matrix in Hilbert space of the system. For

information entr in the mean fiel i m L .
ormation entropy the mean field basis becomes a pure statéa;\), the descriptions in terms of the wave func-

smooth function of excitation energy and carrj@$,7] the ) . : .
same thermodynamic contents as thermal entropy found fotf'On (1) and the density matrix2) are fully equivalent. The

the microcanonical distribution from the level density. Being.ObV.IOUS properties of the density mat(®) are the normal-
calculated in a random basis, the magnitude of im‘ormatioﬁZatlon
entropy of generic states in a complex system is typically on
the level predicted by random matrix theory, and does not
display any regular evolution along the spectrum. o .
The goal of the present paper is to explore the possibilin2nd the matrix identity
of describing the degree of complexity of individual quan-
tum states using the von Neumann definition of entropy, and (N =p(N), 4
applying an external noise which converts a pure state into a
mixed one. We do not consider the perturbation to be weakywhich shows that the eigenvalues of this matrix can be only
therefore, the resulting mixed state depends explicitly on th® or 1. Actually, the density matri¢?) is diagonalized in the
noise properties and gives a description of the ensembleigenbasis|a’;\). Only one eigenvalue, for the original
“system plus noise.” The behavior of regular and chaoticstatea’ =, is equal to 1, while the rest of the eigenstates
systems under the change of parameters of the Hamiltonidpelong to the degenerate subspace with the zero eigenvalues
was widely discussed; see, for example, RE#8—38. Mul-  of p(®)(\), so thatp(®)()\) is the projection operator onto the
tiple avoided crossings of the energy terms as a function o$tate|a;\). Inversely, these properties can be taken as a sig-
parameters reveal strong mixing, and drive the system to theature of a density matrix describing a pure state.
chaotic limit. The analogy of level dynamics with that of a  Now we assume that the interaction paramekease ran-
one-dimensional gas of colliding particles is very productivedom, and have to be considered as members of an ensemble
for studying the spectral statisti¢89,27,28,34,40,41 Here  characterized by the normalized distribution functiB(\),
we assume that the ensemble of the parameter values is ded\ P(N\)=1. Then the description in terms of a wave func-
fined by a distribution function, and calculate the densitytion becomes impossible, and our system is described by the
matrix and von Neumann entropy for a given energy termdensity matrix(here and below the overline refers to en-
Using exactly solvable models, we show essential features afemble averaged quantitjes

Trp'(N)=1, )
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(@) oo (@) cal value in t_he Gaqssiqn orthogonal ensemble of raljdom
Py = CikCyr :f dN P(N)pyr (N). (5 real symmetric Hamiltonians stays, due to the fluctuations,
on the level of In(0.4B); see Refs[21,42,7. In contrast to
This is still a Hermitian matrix with a trace equal to 1. But, that, correlational entropy shows the degree of mixing, or
generally, the operator identity) is not valid anymore. The decoherence, introduced by a given source of noise, regard-
eigenvalues® of the matrix(5), less of the relationship between the resulting state and the

original unperturbed basis.

p'v)=p'|v), (6)

are non-negative numbers between 0 and 1,

Ill. PERTURBATION THEORY

We start with simple examples which allow us to obtain
(pl)2<ple), (7)  exact solutions and shed some light on main properties and
physical meaning of new entropy. First we discuss the case
These eigenvalues can be interpreted as mean occupatioha narrow noise rang&\ that is small as compared to the
numbers of the eigenstatds) for a system which was scale of the parameter values which would lead to a consid-
brought into the contact with an external source being origierable change of the wave functions. This is the perturbative
nally in the intrinsic statéx). The exceptional case of a pure regime. We can assume that the distribution funcfgn) is
wave function is recovered for a fixed paramet®(\)  concentrated neax=0, and find the perturbed wave func-
=6(N—X\o). In notations of Eq(6) and later on, we distin- tion which starts its evolution fax 0 from the unperturbed
guish the eigenstaté¢s) of the density matrix from the eigen- state|0). The statel0) acquires the admixtures of statds

statega) of the Hamiltonian by using parentheses and angu- 0) which are given by standard perturbation thedme
lar brackets, respectively; the dimensions of both sets argssume the absence of degeneyacy

equal. With the HamiltonianH=H,+ AV where the perturba-
The statistical distribution of occupancies can be charaction V is an off-diagonal operator in the eigenbasisHy,
terized by the von Neumann entropy the density matrix5) of the state|0) is, up to the second
order in\,

S@W==Tr{p™ In p}==2 pi¥ Inp{”. (8§ Vig|? VE Ve
4 N m

Pim= 5|o5mo( 1_)\220 —6r> —d Slo_— T 5m0?)

This entropy, still being attributed to a single original energy k m !

term |a), reflects correlational properties of the system sub- _’ VioVEo  8i0(1— o) VEVE

ject to different levels of noise. Therefore, we will call it +\? +

correlational entropy although definitior(8) is quite similar €1€m €m k#0 €k

to that of standard thermodynamic entropy ir_l canonical ther- So(1— 810) ViVio

mal ensemblef2]. In contrast to the information entropy of . (10
a given complicated state in a fixed bafis, which was € S

used in the studies of quantum chd@9-21,23, _ _
Here A and \? are the mean values over an ensemble of

noise, and the notatioa,=E,—E, is used for the energy

denominators. The density matr{20) incorporates two ef-

fects; the redefinition of the original wave functi® due to

the correlational entropg) is invariant and does not depend the perturbationV, and the transition from the pure state to

on the origina] basﬁﬂk)} of Simp]e Conﬁgurations_ Obvi- the denS|ty matrix. The first effect is the only one if the

ously, this is a consequence of correlations between differerierturbation is fixed, while the second effect appears because

components of the eigenfunction which atisregardedin ~ of the ensemble distribution of perturbations.

the probabilistic definition of Eg(9). _ It is easy to see that the first order_ correcti_o_n to the den-
For a pure quantum stafe;\), correlational entropy van- Sity matrix does not change the purity conditifq. (4)]

ishes independently of the degree of complexity of the sysp°=p. The decoherence occurs only in the second order.

tem. ThusS® characterizes the intrinsic terfm) as a member The diagonalization problert6) for the matrix(10) can be

of the statistical ensemble. In genersk has an order of Solved to give, within a needed accuracy, two nonvanishing

magpnitude of IrN,,, whereN, is a number of the eigenstates eigenvalue, as the roots of the characteristic equation,

|v) which have the occupancigs!” noticeably different —

from zero. The maximum possible value of correlational en- p(1=p)=W(AN)?=0, (1D

tropy is InN, whereN is the dimension of Hilbert space. . - .
) o T andN—2 zero eigenvalues. As expected, the statistical mix-
This value would correspond to the “microcanonical” den-

i ; ; 2_32
sity matrix,p(V“)=const=1/N. Note that the information en- "9_'S driven by the mean square fluctuatia)”=Xx

tropy [7] has the order of magnitude of My, whereN_ isa  —A° of the noise level. The decoherence rate is determined
number of essential components in the stationary wave fund? the joint action of all virtual transitions,

tion |a;\) expressed in an original basis which was used in Vv

the definition of information entropy. Although formally the sz 02, ve= ko (12)
maximum value of information entropy is alsoM its typi- K ' €x

lo=—2 W¢ InWg, Wg=(CP?, 9
k
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As seen from Eq(11), only one statg0) has an eigen- states with the zero occupation factersare orthogonal to
value pg close to 1, the first two states. The high order perturbative corrections
consequentially lift the remaining isotropy, populating new
po=1—W(AN)Z. (13)  combinations of original states. The decoherence process can
be rather fast due to the added contributions of many distant
The corresponding eigenfuncti¢f) =3, 4" |k) has a large admixtures, so that perturbation theory can be valid at a very
componentyQ~1— (w/2)x2 of the unperturbed stati®), low noise level only. This “coherent decoherence” was dis-

d I admixt ¢ oth wurbed st t$§°) cussed in a different context in R¢#43]. It is related to the
and_small admixtures ot other unperturbed sta selection of the most importaftainbow diagrams in theory

~—\uvg, k#0; the corrections are of _higher order if the of disordered solids and in random matrix theory.
distribution functionP(\) is even, so thak =0. The perturbed occupancies lead to nonzero entféay
In approximation(11), the new statd1) appears with a (8)]

small but nonzero occupation factor —
P S=—po In po—p1 IN py~W(1—InW), W=w(AN)Z.
(15

The singularity at the origin implies the infinite slope,
The eigenfunction of this state is localized mainly in the g gw= —In W, of growing entropy.
subspace orthogonal to the unperturbed sta(&i,l)
~vw Y2 k#0. The presence of noise removes the isotro- IV. TWO-LEVEL SYSTEMS
pic degeneracy of thisN— 1)-dimensional subspace by sin-
gling out the direction of the multidimensional vector of  There exists vast literature studying two-state quantum

transition amplitudesjv,}. Finally, the N—2 degenerate systems in random surrounding; see, for example, Ré#.

p1=W(AN)Z. (14
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FIG. 1. Correlational entropy of the two-level systéh) as a function of the ratie=2V/A of the strength of the mixing interaction
2V to the range of the random fluctuatidnof the level positions; part&), (b), (c), and(d) correspond to the valugg=e/A=0.2, 0.6, 1,
and 5, respectively, whereis the static level spacing.
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and[45]. Here we are interested only in a rarely discussed 0.7 ! : — :
aspect of the problem, namely, that of complexity of states
generated by stationary noise. We present the results in brief; 0.6
the details can be found in the extended version of the paper

[46]. 0.5
We will first illustrate how correlational entropy is related

to an interplay between the off-diagonal mixing of the levels 0.4

and their diagonal displacement. The two-state Hamiltonian 2

can be written, with the help of spin matrices, as 03

H=%(e—\)o,+Voy. (16

0.1
Direct calculation shows that the two eigenstates of the den-

sity matrix (5) have equal correlational entropies 0.0

1 1+r 1—r
S=—5|(A+n)in ——+(1-nh——|, r=ys?+c?.
2 2 2 FIG. 2. Correlational entropy of the two-level systéh) as a

function of the random perturbation strength? for four values of

the intrinsic mixing strengtlf = 7/y: 0.01 (solid line), 0.1 (dotted
In derivation of Eq(17), the diagonalizing basis rotation was line), 2 (dashed ling and 10(dot-dashed line All the curves as-
performed through an angle/2, defined in terms of the ymptotically approach the limiting value In 2; the rate of approach
parameters of Eq(16), sine=2V/A and cosp=(e—\)/A, is slower for larger values of the strength parameter.
where A(A\)=[(e—\)?+4V?]*? is the level spacingic
=C0s¢ ands=Sing are corresponding quantities averaged!n this example, information entropy measures merely the
over the ensemble. Of course, the average quantities in geflelocalization of the eigenstates with respect to the original
eral do not satisfg?+ c?= 1. The entropy valuél?) evolves  basis.
from S=0 for nonfluctuating parameters &=In 2 for the In Fig. 1, we show correlational entrofy7) as a function
equipartition of the Occupancies_ of 7 for different values of the ratiQ: e/A. At X<1 [FIgS

Let us consider the behavior of correlational entropy forl(a) and Xb) correspond ty=0.2 and 0.6, respectivelythe

the ensemble with the uniform distribution of fluctuating results are qualitatively similar to those &t 0, Egs.(17)

level positions\ in the interval (- A,A). Then we have and(19). With no dynamic mixing=0, entropy is close to
its maximum valueS~In 2— y? at smally. As the relative
_ AN trength = of the dynamic mixing increases, the value of
V e+ A+A(—A) A(=A)—A(A) S
=—n—" =— - entropy dropsS~[1+In(47)]/(47) at larger. At y=1, the
s= AN ——xvamn)  © X . (18 py dropsS~[1+In(47)]/(4) ger. At x

entropy behavior changes, since the noise level is not suffi-
cient for covering the original level spacirjigee Figs. (c)
The simplest case corresponds to the original degeneracyand 1d), for y=1 and 5, respectively In this situation,

=0, when weak dynamic mixing increases entropy, which starts from
zero at7=0 and reaches its maximum value, much lower
r It A+1 oV than In 2, atr=y. Wlt.h the mixing st(ength increasing fur-
s=—-In ———, ¢=0, 7=—. (19)  ther, the level repulsion prevails which leads again to very
27 1+74-1 A low entropy.

A complementary picture of Fig. 2 shows correlational
The average parameteris small,s~ r In(2/7), if the noise ~ €ntropy (17) as a function of the relative noise strength
level is high and the intrinsic mixing is weak compared toX =A/e for four different values of the intrinsic dynami-
the typical random level spacing<1. At strong mixingr callm|xmg §=2V/e_= 7/ x. Generally, entropy increases with
>1, s reaches 1. In this limit the levels are split by the X ~ and asymptotically approaches the maximum value In 2.
dynamic interaction, and the noise is ineffective in changing " weak dynamical mixing, the growth of correlational
the population and reaching the decoherence. The entrof§/tropy is very steep in the vicinity of the poipt=1, where
value correspondingly evolves from In 2 to 0. This behaviorth€ accidental level crossing is possible for the first time;

is opposite to the evolution of information entropy of the compare the change of behavior at this point in Fig. 1. The
same states, stronger the dynamical mixing, the smoother the increase of

entropy becomes. Entropy remains low as long as the intrin-

1+ 1+ 1— 1— sic level repulsion governed by the parametelominates.
_ 1Tcose CoSe 17COSe cose The situation is different if the diagonal elements are

2 2 2 2 fixed [we change the notatione(-\)—e] but the off-

(20) diagonal coupling fluctuates, for exampM, is uniformly

distributed betweew>0 and —v. Here the only relevant

as a function of the mixing strength for a fixed diagonal parameter is that of perturbation theory, the ratio2v/e of

spacing;l —0 at weak mixing and—In 2 at strong mixing. the level spacing due to the mixing to the unperturbed spac-
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ing. Due to symmetry of the perturbatiomvanishes, while entropies coincide numerically at a poiét 6,, where the
c=[In(k+1+ )]/ k. With weak mixing,c~1— (x2/6), effective angled, is defined by the condition cag=r.

and entropy(17) is low,
V. RANDOM MATRIX ENSEMBLES

S~(k?112)In(k?/12), Kk<1. (21) The 2x2 Hamiltonian matrix of an arbitrary two-level
system can be presented as
When the mixing intensity increases,decreases, and en-
tropy approaches its limiting value for equipopulated levels, H=3(u+o-v) (26)

S|2C2|21 i
~In2-Z~In2-3

In 2« in terms of one scalaru=Tr H) parameter and one vector

, Kk>1. (22) (v=vn) parameter. The vector is restricted to the X,z)

plane if time reversal invariance holds, and becomes three-

The off-diagonal mixing plays a “natural” role of noise Qimensional othgrwise. Its magnitudegives the Igvel spac-
ing. Both entropie$ andS depend only on the unit vector,

which creates entropy, in contrast to the previous examplg *.. - formulag17) and(25) of Sec. IV remain valid inde-
when it stabilized the system by generating dynamic repul- endently of statistical properties ulfandv
sion as a counterpoise to random noise; that situation can e Usualli// the randomppa}?ameters of thé Hamiltonian are

considered as a prototype of the localization in disordered . I :
. : . ~supposed to obey Gaussian statistics. In Gaussian random
solids, when the levels in the wells connected by tunnelin

fluctuate %atr.ix gnsembles, all eigenstates have the same statistiqal
The séme expressidiEq. (17)] for correlational entropy d|str|but|on§, so that any of them can represent the generic
is valid for the Hamiltoniaﬁ features. F_lrst we point out the properties of correlational
entropy using the example of two-level Gaussian ensembles.
According to Eq.(17), this entropy reaches its maximum

value of In 2 under the condition af=0. This is obviously
the case for invariarfiGaussian orthogoné&GOE) or Gauss-
for a spin; in a random field described by the unit vector  jan unitary(GUE)] ensembles where the vectoris distrib-
with a random directiorié,¢). The parameter is given here  uted isotropically. For both the ensembles, the mean infor-

K

H=o-n (23

by mation entropy
r=\n?=\cZ+s,s_, c=cos¥, e
ﬁ + IGOE:EJO d(,DI((P):2|n2_1 (27)
s.=sinfexp+ip), O=r<1. (24)
or

This model is more general in the sense that both the mixing 1 1

strength and the level spacing are fluctuating. On the other loue= — f dQ 1(9)== (28)
hand, the level spacing here does not depend on noise, so 4m 2

there is no level crossing. Information entrofg) of the

eigenstates for a fixed field orientation, is always lower tharS. In Egs.(27) and (28), the angular
coordinates of the unit vectar are used, & ¢<27 and 0
1 1+]|cos 6| <@=<=. The instantaneous quantityn) passes the maxi-
| f=1"=—= :(1+ |cos 6])In mum value of In 2 at the certain orientations of the vector
2 2 ; . o
as at the poin¥= /2 in Eq. (25), remaining smaller every-
1—|cos 6| where else.
+(1—|cosé|)In 5 ] (25 Correlational entropy also remains at the maximum value
when variances of all matrix elements have arbitrary values

and the vectom ceases to be fully isotropic. Indeed, the
does not depend on the azimuthal angleExpressiong25)  probability distributions for ensembles of real symmetric ma-
and (17) have identical structures. Correlational entropy re-trices,
duces to information entropy in the case when the field di-
rection is uniformly distributed on the surface of a cone with oS de
the fixed polar angle. The average density matrix is then Peyr(n)de= sZcod gt ol SiP ¢ 27" (29
diagonal in the originat representation, which is singled out
by azimuthal symmetry of the noise distribution. The twoand Hermitian matrices,

2.2
azslsz dQ

O= - - —,
Phierm(n)d [s255c0S 0+ o2(ssirPo+s5c0S @) Sirt01%2 4

(30




62 SOKOLOV, BROWN, AND ZELEVINSKY PRE 58

; ; ialdg — 2
remain even, which yielda=0 as before. In Eq(30), o 1B — S (WE In W), 33
K

= (o3+ 03)/2, whereasr; , ands; , are variances of diago-
nal and off-diagonal matrix elements, respectively. The cor-
relational entropy drops to zero only when the off-diagonalAccording to the discussion below E@®), the two entropies
matrix element vanishes identically. The randomness of th@re related in this basis 4= S(F) +1In(0.48), which leads
interaction is of major importance. Conversely, informationto the basis-independent expression for the localization
entropy | is sensitive to the ratios of variances which arelength

different in different representations.

Gaussian ensembles of largest 1) random matrices at- lc=0.48 expS'®). (39
tract special attention for modeling chaotic dynamics in
guantum systems. The Hamiltonian matrix elements calcu-
lated in a fixed basis are taken as mutually independent
Gaussian random variables. The idea of complete chaos im- Here we consider a problem with infinite Hilbert space,
plies that their distribution be invariant with respect to thenamely, that of a linear harmonic oscillator in a uniform
choice of the representation basks. This invariance pro- external field of a random strength. The diagonalization of
vides a rigid connection between variances of all matrix elthe Hamiltonian at any fixed parameter value is elementary,
ements. However, it has been discovered that one gains dut the diagonalization of the density matrix and calculation
additional possibility of describing special effects, such aof correlational entropy are not trivial, and we did not en-
dynamical localization, by permitting more flexible condi- counter the full solution in the literature although our results
tions for the variances. A preferential basis exists, thenslightly overlap with those of Ref50].
where the localization takes place. This basis should be de-
fined in each case in accordance with the physical situation. A. Model
The Gaussian ensembles of large random matrices with band
structures whose elements decrease rapidly outside a band o

VI. HARMONIC OSCILLATOR IN A RANDOM FIELD

fAt a given strengtit, the Hamiltonian of the problem,

a typical sizeb around the main diagonal are believete, 1 1 F \2 F2
for example, Ref[47]) to model the stochastic motion with H=H,— Fx=-—p?+ —mwz(x— ﬁ) —,
localization. Basis dependent information entropy or/and the 2m 2 mao 2mw (35

inverse participation ratio are used to describe the degree of
localization; see, for example, studies of the banded rando

matrix ensemble in Ref$48,49, and realistic nuclear shell ; FEy 1)
model calculation$7,23] where the configuration selection ZO%T)’(HUEE?SE?\%? &ig?:?ﬁg’migdmenggz trsn;gerg}e of t?we
rules generate a quasibanded pattern of the Hamiltonian ma- ' gen play

L ! . L . xact quantum numbera in Eq. (1). The dimensionless
trix in the mean field basis. The localization length is then“noise9 parameter)\:F(Zﬁmwg)’(l’)z displaces the spec-
expressed _ak,ocz exp() in terms _of information entropy trum as a wholdno crossing in this modgl
calculated in the preferential basis.

However, the band structure of Hamiltonian matrices is The “natural” basis k) of equidistant nonshifted states of

N . o . . ~a noiseless system\ & 0) is built with the annihilation and
not maintained in an arbitrarily chosen basis. Generally, in- .

i . . . ; creation operators,
formation entropy found in such a basis contains no infor-

"Yescribes the harmonic oscillator with a shifted equilibrium

mation on the localization. Conversely, correlational entropy . 7
presents a universal and invariant characteristic of chaotic y_— ﬁ(a“ra), p=——(af—a), Xo= [
dynamics in the presence of localization. The density matrix V2 2Xg Mo

p® in the vicinity of energyE can be directly connected to (36)

the imaginary part of the resolvent matrix, .
q The shift of the equilibrium along the axis to the pointx
_ 2_ . - .
p‘E):; IM(G(E—i0)), @) F/mw =v2x,\ is the unitary transformation
D()\):efix/i)\xop/h:e)\(ata):DT(_)\), (37)
where the angular brackets imply, along with the ensemble
averaging, energy averaging over a small window around the HO\)=D(A\)HoD(=\)—\fiw. (38)
pointE, andd is the local mean level spacing. In the special

basis where Hamiltonian matrices are banded, the averagghe eigenvector$n;\) at a given\ are obtained from the
resolvent matrix is diagonal, and E(1) reduces t0pf<"5k), original nonshifted statel;1)=|n;A=0) by the shift opera-
=(WE) 8, ., whereW(® gives the probability distribution tor [n;\)=D(\)|n). Therefore, the amplitudes of the eigen-
for a typical eigenvector with energy close o Therefore,  vectors(1) with respect to the noiseless bagi$ are given
the (basis independentalue of correlation entropy is equal by the matrix elements

to
Cr(\)=(KID(\)[n) (39
(E)_ _ (E) (E) . .
ST= ; (Wi ) In(Wi™), (32 of the shift operator(37). The instantaneous eigenvector
[n;\) carries an average number of the original quanta equal
while the information entropy is given by to
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Starting with the completeness conditidh|n;v)(n;v|

n=(m;\|a’ajn;\)=n+\2 / :
=1, one easily comes to the kernel representation

(40)

B. Integral equation for the density matrix

M N)= (n) (n) A (n) ). 50
For the noise ensemble characterized by @hesitively (AT Ey Py dy (M@, () 0
defined distribution function(\), the density matrix5) of

the energy ternin) is In the original oscillator basikk)=k;0), the components of

the eigenvector§44) are

Pi = f dh POVNKIDO)[n)Y(n[DTVD[K)  (41) ()= (kIn; v)

where the unitarity of thé transformation was used. This :(pm))—l/zf dn \/W¢(n)(7\)(k|D(7\)|n>

matrix represents the density operator v v '
(51)

p<n>:f d\ P(M)D(V)[n)(n|DT(N) (42

Matrix elements of the shift operator are equal to
in the noiseless basis. It is convenient to project instead the
eigenvalue problem

<kID(x>|n>=e‘”2’2\/E:.!(—x)k‘”LE‘”(V), (52)

(M) ,)= (M
p'Mv)=p,"|v) (43) where LY(¢) is the associate Laguerre polynomial(¢)

) ; ; =L,(&. Due to the symmetry propertyLX "(¢)
onto the set of statel;\) with the noise\ treated as the n K -k ) : n )
representation variable. Generally speaking, this set of states(K!/n!)(—&)" "Ly ""(¢), the matrix (52) is symmetric
is not complete, and maps the original problem on the subWith respect tck andn. Up to this point, the results are valid
space of eigenstates which belong to all nonvanishing eigerfOr any energy ternin;\) and an arbitrary distribution func-
valuesp™ . In the new representation, the eigenfunctions tion P(A).

¢, (V) =A"VPN(N|DT V) [w),

(44) C. Gaussian noise

whereA(V”) are normalization constants, satisfy the integral

equation

f A\ p MO BN =p VBN, (45)
with the real symmetric kernel

PN =VPON(DN =N VPNT). (46)

As an example of practical importance, we show the exact
solution for an oscillator originally in the ground state,
=0, interacting with a source of Gaussian noise of a certain
width A. The distribution function of the noise intensity is in
this case

POV = 1 e~ \2A?

V2mA?

and the ground state density mat(#8) in the A representa-

(53

The diagonal elements of this kernel are simply the probtion (we omit the superscripi=0) reads

abilities of the noise distribution,

p™M(NN)=P(N). (47)

e~ (VN 2)/aAZ o= (A -1")?12

p(N )= (54)

1
J2mAZ?

They describe the ensemble itself, and do not depend on the

termn under consideration.
The kernel(46) can be expressed as

PN = VPOOPIN e ML [(v -1
(49

in terms of the Laguerre polynomials, . It follows from
Egs. (42—(44) that the orthonormalizedn{v’|n;v)=4,/,
subset of eigenvectors belonging to nonzero eigenvaiﬁj%s
is expressed in terms of functiofé4) as

|n;v>=<p;“>>-1’2f PSPl (49

if the mutually orthogonal solution@4) of the integral equa-
tion (45) with the Hermitian kernel(46) are normalized to
unity which corresponds to the choice &f" = (p{™) =2

Using the properties of the Hermite polynomiéds(x), one
can represent the kern@4) as

PON)= 2 PN $(N) (55

in terms of the set of orthonormalized functions

8.0~ 2| ety ),
(56)
where
p,=2sin p/2)e” (12 (57)

and the parametey, 0< <o, is defined by
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[1+4A2 We have to mention that, in the case of a fixed perturba-
A7 (58 tion of a strength\, we would have a pure coherent state of
a shifted oscillator with the Poisson distribution

sinh n=

Representatiob5) obviously solves the eigenvalue prob-
lem (45) for the ground state term. The normalization of the foek— (67)
density matrix=7_o,p,=1 can be checked directly. The k

value of correlational entropy defined by this density matrix ) o
is which reduces to the Gaussian distribution near the center

k=Kk in the classical limit ok> 1. The width of the coherent
__ _n _ : state in the occupation number representationAik)EzE
S EV pvInpy 2 coth(7/2) = In[ 2 sinf(#/2)]. and therefore the relative uncertainty of this number is small,

(590 Ak/k=k 2 Contrary to that, in our random noise ensemble

The distribution function for th ber of original i (66) the state is mixed, and the fluctuations of the number of
€ distrnbution function for the number of original quanta Is quanta are not suppressed even in the classical limit,

given by the diagonal matrix elements of the density matrix

in the unperturbed bas|k), (AK)2=2K2. (69)
fk=(k|P|k>=f dh POV)[(K|0NY]2 The situation is similar to that in the boson intensity inter-
' ferometry(Hanbury Brown and Twigsfor many incoherent

sources; see, for example, RE31].

_\FI‘(kJrl/Z) sinh( 7/2)

7 T(k+1) (coshyr? (60

D. Relation to thermodynamics

The average number of excited quanta equals The eigenfunctiongs6) of the density matrix54) in the
representation formally coincide with the coordinate wave
_Z 5 = functions(&v) for a linear oscillator with the dimensionless
k:gfo kfk:f dA NP(N)=N"=A%, (61)  “coordinate” &= {sinhy\. The dimensionless Hamiltonian
for such an oscillator would be

which leads to the simple value of average energy of the

term H=3(E&-d¥d¢?)=(a'a+1/2), (69

_ _ — ) where the annihilation and creation operators
E=Tr(pH)=Aw(k+1/2) —Fx=hw(1/2—A°), (62

in agreement with Eq40) for n=0. The average energy of a= i(§+ d/dé), a*zi(g—d/dg) (70)

a given term is always lowered by the presence of noise; V2 V2

however, this energy cannot be attributed to the oscillator

itself, because it includes the contribution of the externar€ introduced. The energy spectrum of the opere&éy,

noise source. e,=(v+1/2), is equidistant and quantized Xxrindependent
According to Eqgs.(61) and (58), the mean number of units at any noise magnitude. Since the density operator is

original quanta excited by the external field can be written agliagonal in the basis of the eigenfunctions of £8p), it is
tempting to interpret our results as an equilibrium reached by

_ 1 the system under the influence of the noise. The equilibrated
= ZsnR(p2)° (63 (“dressed”) system is represented by the effective oscillator
(69). We can assign the physical frequeneyo this oscilla-
tor, and interpret the corresponding occupation number spec-

Introducingk as a new parameter, trum (57) as the Planck formula with the effective tempera-

o ture
sinhg=1/(2\/?), coshp=1+1(2k), (64 .
- (7D)
we obtain the distribution of quant&0) in the form n

(2K)! 1 Under this identification, the temperature scale is related to

f .= (2k) 12 - . (65  the range of noise,
2%(k!1)? [1+ 14(2k) K+ 2
A= ! (72
When the external perturbation is turned dff~0 and f,  2sinifiw/2T)’
—dyo- In the opposite limit of strong noise, the mean num-
ber of excited quanta is larg&¥$ 1), and Eq(65) reduces to or to the mean square value of the random force,
the y-square(Porter-Thomasdistribution
— 1 hw
(F2)Voxo=— oo (73

fo=(27kk) "2 exd —k/(2k)], k>1.  (66) v sinh(fiw/2T)
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The density operator can be represented in terms of theith the density operator from Edq74). For example, the

effective oscillator defined above as mean number of original quanta is given by
expl—hoHIT= 3 p (o = ol )
p=exp—hw =2 plv)(7], = V| ——=]| ¥
v=0 v=0 P V2 sinhy
T ho 4 w2 U 1 -
py=2inf 5 |exp — =~ (v+1/2)]. (74) = Sinhy  hosnhy  dsnfGaon) (82
The effective oscillator is in the conventional thermody-in agreement with Eq(63).
namic equilibrium with a heat bath of temperature Eq. The distribution[Eq. (65)] of the original quanta differs

(72. In an ordinary way, we can define its free energy from the Planck formuld78). At a narrow range of noise,
T<fiw and A~exp(—hw/2T), which corresponds to the

ﬁw _ . . .
F=T In 2 sin{ 2| | (75 quantum low-temperature limit, we obtain a normal quantum
2T result
so that canonical thermodynamic entropy k=e T T<ho. (83
S— aF (76) A broad noiseA~T/fhw>1 leads to the classical limit of

T high temperature. In this limit, the number of quanta is in-
creasing with temperature quadratically rather than linearly,

coincides with correlational entrop§s9). Thermodynamic

energy of the effective oscillator is equal to — [ T\?
U=FrTs=to| v 2| =22 coth 22 (77
= = 5= 5 coth—=—, . . . .
Y12 2 2T Let the random field applied to an oscillator with the elec-

) . .. tric chargee be abruptly removed at the moment 0. The
where the mean number of excited effective quanta is givepscillator remains excited and starts to radiate electromag-

by the Planck formula netic waves, losing its energy with the rate
= 1/ ] (79) — 2e230* _ 2e®X30*  v+1/2
expfw/T)—1 T 73 T3 sinhelT)
Let us consider an arbitrary dynamical variable of the 262%20% 1
original oscillator described by the operatota’,a), = 0 (85)

3¢ 4sintf(hwl/2T)"

5=f dx 7’()\)<)\|O(3T,a)|>\>:f dN P(N)O(N,N), The emission rate directly measureffectivetemperature.
(79 Having no knowledge about the noise_properties and detect-

+ . ing only the frequencyw and intensityE of radiation, we
where the operators’ anda of original quanta are supposed ¢oy|d assume thermal equilibrium inside the radiating sys-
to be no_rmally ordered Wlth respect to the unp.erturbec{em, and assign the temperatdrg by the direct application
vacuum; in the second equalitizg. (79)], the properties of ot \he planck formula instead of the actual distributi6s).

the coherent stata) were used. Since the parameters of they; g easy to see that these temperatures are related through
effective oscillator depend on temperat{iEgy. (71)] via the

factor /sinh 7, the mean value of any operat@t9) contains sint (A w/2T)=1% sinh(7 w/2T,)e" /o, (86)
an additional nontrivial temperature dependence. Indeed, us-
ing the relationg47) and(55), For the narrow noise, two definitions agree:

- To~T, T<ho. (87)
PON=p(NN)= 2 pudu(Mbu(V), (80)
" However, under conditions of the broad noise, they lead to

we can express the mean valF®) in terms of the effective Very different assignments withi>T:

oscillator T2
— a'+a a'+a " fo ®8
0=2 p,| 7O —, —— v
v=0 V2sinhy' V2 sinhy Two definitions can be discriminated in the case of the spec-

trum of normal modes with different frequencies by the de-
. (8D viations from the Planck formula at the low-frequency edge,
if the noise amplitudé- is not frequency dependent.

a’+a at+a
V2 sinhfw/T) 2 sinfAw/T)

=Tr

o
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VIl. A MANY-BODY EXAMPLE RS [TTTI TR T I IO T T T T

Here we illustrate the concept of correlational entropy by C ]
calculating this quantity for a realistic many-fermion model 20 o E
with strong interparticle interaction of a variable random r 1
strength. For this purpose, we use the version of the nuclear 15 = ]
shell model which provides the best available description of C ]
spectroscopic data for adld nuclei[52]. The model Hamil- w 10 b S
tonian consists of the one-body part given by a spherical ' L
mean field due to the closed shell core’80 and the semi- os L. b
empirical residual two-body interaction determined by 63 re- s ]
duced matrix element$(j1j,)JT||V|(j3j4)JT) allowed in C ]
this truncated Hilbert space by the conservation laws of an- 00 = ]
gular momentund and isospiril. Apart from numerous spe- a
cific nuclear calculations, this model was recently used —o.5 Conln b oo b oo b
[23,26,7 for studying highly excited states beyond the limits T80 0 50 100 150 200 200 300 350
of experimental information. One of the methods utilized in number
t_his analysis studies the evolgtion _of obse_rvables as a func- g6 3. correlational entropy of 3257T=0"0 states in the
tion of the strength of the residual interactiph38,53. sd-shell model for the?*Mg nucleus. The states are ordered in

We take as a generic example a set of states with quantuffcreasing energy.
numbers)”T=0"0 in the 2*Mg nucleus, with four protons
and four neutrons in thed-shell model space. The dimen- are symmetric with respect to the middle of the spectrum; in
sion of this set of states i8=325. The unperturbed basis the thermal descriptiofi26], the center corresponds to infi-
|k) is that of simple independent particle configurationsnite temperature with positive and negative temperature re-
which are projected onto correct values of integrals of mogions on the left and right, respectivilyThe behavior of
tion J andT. The residual interaction is split into two parts, information entropy and of single-particle entropy defined by
diagonal and off-diagonal, with respect to the bakjs The  the evolution of the single-particle occupation numbers is
diagonal part is included into unperturbed energies in ordeessentially the same. However, the absolute scales are very
to lift the degeneracy of bare configurations. The off-gitferent. As seen in Fig. 3, the typical values bf,
diagonal interaction with the overall factarin front is our —exf S9] for the most complicated states are close to 6,
“random noise” with A=0 and 1 corresponding to the in- \yhich is much lower than the localization length BB
dependent particle case and the realistic strength, respefs,ng with the use of information entropy. From the pertur-
tively. L _ .__bative analysis of Sec. Ill, we know that the number of ef-

The many-body Hamiltonian is diagonalized as a functionggciyely occupied eigenstates of the density matrix is related

gr%\g::g; eprsohv(;evens #\S';/iv éthl3(2)? gggg]y E\?IUEE)(IQ) A\LTSZS to the order of perturbation theory. ThBhcan be interpreted
i j é'n terms of a number of particle-hole excitons created by the

level crossings rapidly transform the eigenstates of th tral evolution. Thi int deserves to be studied more in
Hamiltonian into complicated superpositions of many origi-%’ég’" al evolution. This po eserves 1o be studied more

nal configurations. The generic signatures of quantum chao
in level statistics, such as nearest level spacing distribution,
spectral rigidity, and level curvature distribution, agree with Viil. CONCLUSION

the GOE predictions already at~0.3. The calculation of We have discussed examples of quantum-mechanical sys-
information entropy in the original mean field basis showsiems ynder the conditions of stationary external noise, which
that the evolution of complexity continues, so that\at1  \yas defined by a distribution function of parameters control-
the states in the middle of the spectrum are close to the GO|1:ﬂg the interaction Hamiltonian. The maximum of quantum
limit qf [ =In(0.4&N). ' . i information on such systems is provided by the density ma-

Using the known eigenfunctioria) of the system in the iy \which was found for various cases, analytically in Secs.
original basigk), we find the density matrip{{)(\) of Eq.  1lI-VI and numerically in Sec. VII. The perturbative treat-
(2), and construct the ensemble of such matrices for differentnent of Sec. Il illustrates the mechanism of equilibration
values of\. The uniform averaging ovex in the chaotic through the consecutive selection of directions in Hilbert
interval 0.3s\<1 gives the density matrix{®) of Eq. (5). space which form the eigenbasis of the density matrix. In
This matrix can be diagonalized and its eigenval(mscu-  other examples, the weakness of the interaction was not as-
pation numbersdetermine correlational entrogg). sumed, and the solution was exact.

Figure 3 shows the correlational entrof® of all 325 We have used correlationalon Neumanh entropy as a
states ordered according to increasing energy. Although thol for measuring the degree of disorder and complexity of
fluctuations at this dimension are significant, we neverthelesstationary states. By definition, this entropy vanishes for pure
see the same qualitative pattern as the one obtained with tlgantum states. Therefore, it characterizes the system in a
help of information entropy23,7]. The degree of mixing given noise ensemble when the stationary states are mixed.
measured by correlational entropy evolves along the spedn general, the arising configuration with certain occupation
trum, revealing the regular increase with excitation energyhnumbers of the eigenstates of the density operator does not
(in finite Hilbert space the statistical properties of eigenstatesoincide with thermal equilibrium as defined by canonical
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Gibbs ensembles. Accordingly, the correlational entropy igproduced by the source creating the quanta pairwise which is
not equal to the thermodynamic entropy. Moreover, correladescribed with the help of the Bogoliubov transformation
tional entropy is calculated for the individual energy terms Representing the complexity of individual quantum terms,
which evolve adiabatically as a function of the noiseour invariant correlational entropy can be juxtaposed to
strength. The resulting state is in general different for differ-representation-dependent information entropy. We drew the
ent terms. attention of the reader to their similarity and distinction in
It would be interesting to determine the conditions for theVarious applications. Although they are formally quite differ-
external noise which would give the same equilibrated stat§Nt and may react in a different way to the change of pa-
as in the heat bath. It is usually assumed that the necessaigmeters of a simple regular systéec. V), they behave
ingredient is the continuous spectrum of the normal modedualitatively similar in a complicated systefgec. VI,
represented in the spectral expansion of nfisB. We deal where one sees the standard signatures of quantum chaos.

with the stationary noise represented by random paramete ue to the simi!arity of adjacent states in the c_ha_otic regime
in the Hamiltonian. In Sec. VI, however, we show that the 1, both entropies are smqoth functions of excitation energy,
ground state of a harmonic oscillator in a random uniforma”d therefore can be considered as thermodynamic variables.

field can be described as an equilibrated thermal state of alﬁoth entropies carry |nforr’r_1at|on on the complexity of |nd!—
effective oscillator with temperature determined by thewdual states and its evolution along the spectrum. Quantita-

Gaussian width of the field distribution. The situation here jsivelY information entropy(in the appropriate bagisex-

similar to that in many-body physics where the interactingP"€SSe€s this complexity in terms of a number of mixed

system can be modeld85] by a gas of dressed quasiparti- simple configuratic_)n_s, wherea; cqrrelational entropy mea-
cles with properties depending on temperat(ineour case sures essentially similar properties in larger blocks as a num-

the energy spectrum of the oscillator is not renormalized, bu er of classes of states effectively m'xe‘.’ by extgrnal noise.
f course, one should remember that information entropy

the coordinate scale is determined by noise and changes wi ) L . :
refers to a given Hamiltonian, while correlational entropy

effective temperatude The difference between a simply b 2 | - lex. The furth d
heated oscillator in a thermostat and an oscillator excited Sfescrl es a "system plus noise™ complex. The further stud-

a Gaussian noise and described with the aid of effective ten{SS Will bring the more deep insight into the problem.
perature might be important for the problems of multiple
meson productiof51,5€ in high energy collisions. We can
also remind the reader that the notion of the effective quan- The authors acknowledge support from NSF Grant Nos.
tum oscillator appears naturally in the problem of a uni-94-03666, 95-12831, and 96-05207. One of (¥V.S.)
formly accelerated observer in the Minkowski wofk7,58.  thanks the National Superconducting Cyclotron Laboratory
An observer falling with the proper acceleratignsees the for its hospitality; he acknowledges financial support from
Minkowski vacuum as a black body emitter with the effec-INTAS Grant No. 94-2058. V.V.S. and V.Z. thank V. F.
tive temperaturd =#g/(2c). This consideration is closely Dmitriev and V. B. Telitsin for interesting and useful discus-
related to the Hawking black hole radiatip9]. However, sions; they are also grateful to D. V. Savin and V. V.
in those cases, one has squeezed rather than coherent stéfetevinsky for their assistance. V.V.S. greatly appreciates
of the oscillator(in terms of the unperturbed system they arefruitful discussions with Y. Fyodorov and H.-J. Sommers.

ACKNOWLEDGMENTS

[1] M. Ohya and D. PetQuantum Entropy and Its Ug&pringer-  [15] A. J. Lichtenberg and M. A. LiebermaRegular and Stochas-
Verlag, Berlin, 1993 tic Motion (Springer, New York, 1980

[2] A. Wehrl, Rev. Mod. Phys50, 221 (1978. [16] J. W. Helton and M. Tabor, J. Phys. ¥8, 2743(1985.

[3]L. D. Landau and E. M. LifschitzStatistical PhysicsPerga-  [17] G. Lindblad, in Quantum Probability and Applications Il
mon, Oxford, 1958 o Lecture Notes in Mathematics Vol. 130pringer, Berlin,

[4] K. Blum, Density Matrix Theory and Applicationdlenum, 1989, p. 183.

New York, 198).
[5] L. van Hove, PhysicdAmsterdam 21, 517 (1955; 23, 441 L8] C- Beck and D. Graudenz, Phys. RevA& 6265(1992.
(1957): 25, 268 (1959. [19] F. J. Yonezawa, J. Non-Cryst. Soli@§&36, 29 (1980.
L [20] J. Reichl, Europhys. LetB, 669 (1989.

[6] M. Srednicki, Phys. Rev. B0, 888(1994). ]
[7] V. Zelevinsky, B. A. Brown, N. Frazier, and M. Horoi, Phys. L2l F- M. Izrailev, Phys. Repl96 299 (1990.

Rep.276, 85 (1996. [22] V. G. Zelevinsky, Nucl. Phys. /&55 109 (1993.
[8] R. S. Ingarden and K. Urbanik, Acta Phys. P21, 281(1962. [23] V. Zelevinsky, M. Horoi, and B. A. Brown, Phys. Lett. B0,
[9] M. D. Srinivas, J. Math. Physl9, 1952(1978. 141 (1995.
[10] R. Kosloff and S. A. Rice, J. Chem. Phyis, 1340(1981); 86,  [24] I. C. Percival, J. Phys. B, L229 (1973.

2153(1982. [25] V. Zelevinsky, Annu. Rev. Nucl. Part. Sei6, 237 (1996.
[11] P. Pechukas, J. Chem. Phg§, 2239(1982. [26] M. Horoi, V. Zelevinsky, and B. A. Brown, Phys. Rev. Lett.
[12] R. Alicki and M. Fannes, Lett. Math. Phy32, 75 (1994. 74, 5194(1995.
[13] M. H. Partovi, Phys. Lett. AL51, 389 (1990. [27] P. Pechukas, Phys. Rev. Léftl, 943 (1983.

[14] W. Stomczymski and K. Z/czkowski, J. Math. Phys35, 5674 [28] T. Yukawa, Phys. Lettl16 227(1986.
(19949; 36, 5201(E) (1995. [29] A. Szafer and B. L. Altshuler, Phys. Rev. LetD, 587(1993.



68 SOKOLOV, BROWN, AND ZELEVINSKY PRE 58

[30] B. D. Simons and B. L. Altshuler, Phys. Rev. LetD, 4063 [47] F. M. Izrailev, Phys. Rep4, 59 (1991).

(1993; Phys. Rev. B48, 5422(1993. [48] G. Casatiet al, Phys. Rev. Lett64, 1 (1990.
[31] B. D. Simons, P. A. Lee, and B. L. Altshuler, Phys. Rev. Lett. [49] Y. V. Fyodorov and A. D. Mirlin, Phys. Rev. Let67, 2405
70, 4122(1993; 72, 64 (1994). (1992.
[32] Y. Alhassid and H. Attias, Phys. Rev. Le#4, 4635(1995. [50] J. N. Hollenhorst, Phys. Rev. D9, 1669(1979.
[33] P. Gaspardet al, Phys. Rev. M2, 4015(1990. [51] I. V. Andreev, M. Plumer, and R. M. Weiner, Phys. Rev. Lett.
[34] J. Zakrzewski and D. Delande, Phys. Rev4E 1650(1993. 67, 3475(199).
[35] F. von Oppen, Phys. Rev. Lef3, 798 (1994 [52] B. A. Brown and B. H. Wildenthal, Annu. Rev. Nucl. Part. Sci.
[36] Y. Fyodorov and H.-J. Sommers, Phys. Rev5E R2719 38, 29 (1988,

(1995; Z. Phys. B99, 123 (1995.

[37] D. Kusnezov and C. H. Lewenkopf, Phys. Rev5E 2283 [53] N. Frazier, B. A. Brown, and V. Zelevinsky, Phys. Rev5&

1665(1996.

(1996. .
[38] D. Kusnezov, B. A. Brown, and V. Zelevinsky, Phys. Lett. B [54] J. P. Gordon, L. R. Walker, and W. H. Louisell, Phys. Rev.
385 5 (1996. 130, 806 (1963.

[55] L. D. Landau, Zh. Eksp. Teor. FiAd1, 592 (1941 [J. Phys.

[39] F. J. Dyson, J. Math. Phy8, 1191(1962. .
USSR5, 71 (1941)]; Zh. Eksp. Teor. Fiz30, 1058 (1956

[40] F. Haake Quantum Signatures of Cha¢Springer, New York,

1991). [English translatiorCollected Papers by L. D. Landaadited
[41] V. V. Sokolov and V. G. Zelevinsky, Nucl. Phys. 204, 562 by D. Ter Haar(Gordon and Breach, New York, 196%p.
(1989. 301 and 723 P. Noziees, Theory of Interacting Fermi Sys-
[42] K. R. W. Jones, J. Phys. &3, L1247 (1990. tems(Benjamin, New York, 1964
[43] A. Bulgac, G. Do Dang, and D. Kusnezov, Ann. Phgis.Y.)  [56] B. A. Bambah and M. V. Satyanarayana, Phys. Rev3®
242, 1 (1995. 2302(1988.
[44] I. B. Khriplovich and V. V. Sokolov, Phys. Lett. A18 443  [57] P. C. W. Davies, J. Phys. 8, 609 (1979; Rep. Prog. Phys.
(1986; Physica A141, 73 (1987. 41, 1313(1978.
[45] J. A. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, [58] R. F. Bishop and A. Vourdas, J. Phys.18, 2525(1986.
A. Garg, and W. Zerger, Rev. Mod. Phy&9, 1 (1987). [59] D. W. Sciama, P. Candelas, and D. Deutsch, Adv. PB@s.

[46] V. V. Sokolov, B. A. Brown, and V. Zelevinskfunpublishegl 327(1981).



